新潟県における水稻品種の品質・食味の向上

第15報 味度値の品種間差異

平尾賢一・松井崇晃・小林和幸
（新潟農業総合農業研究所研究所）

Improvement of Grain and Eating Quality for Rice Breeding in Niigata Prefecture
XV. Varietal difference of “MIDO value”

Ken-iichi HIRAO, Takaaki MATSUI, Kazuyuki KOBAYASHI
(Niigata Agricultural Research Institute Crop Research Center, Nagakura-857, Nagaoka, Japan)

キーワード：食味、水稻、味度値
Key words : Eating quality, MIDO value, Rice

良食味品質を効率的に育成するためには、簡便かつ迅速な食味評価方法を開発することが極めて重要である。

味度値は測定効率が高く食味総合評価とも関連が高いため、良食味品質育成における食味評価に有効であることが報告されている(1)～(3)。

筆者らは、多数の品種・系統の味度値を調べ、その品種間差を明らかにし、味度値と玄米品質、整粒歩合、窒素含有率およびアミロース含有率との関係について考察したのでここに報告する。

材料および方法

味度値は、トーヨー味度メーター MA−90B（大洋精米機製作所）を用い、玄米を専用精米機 MC−90Aで90%に搗精した後測定した。窒素含有率は、搗精残の白米を粉砕して、近赤外分光分析計（1996年はブラントルーバー社インフライザー450, 1997年はニレコ社 6250HON）により分析した。アミロース含有率は、オートアナライザー（ブラントルーバー社）により測定した。玄米品質については、乳化白等の未熟粒の多少や光沢、透明度等を考慮して、1（上上）～9（下下）で観察調査した。整粒歩合は、玄米を品質判定機（1995, 1997年は静岡精機 RS2000, 1996年はKett RN−500）で測定した。

なお、玄米品質は、1994, 95年の2か年、整粒歩合は、1995, 96, 97年の3か年、窒素含有率、アミロース含有率は1996, 97年の2か年について調査した。

結果および考察

味度値を出穂期別にみると、極早生群では、中～晩生群に比べ味度値が高いもののは単に少なくなかったが、「ほほほの穂」、「きら宮崎」、「新潟45号」が安定して高い値を示した（第1表）。早生群では、当センター育成系統のBio−31が単年結果であるが4か年の中で最高値を示した。また、「新潟55号」「新潟56号」、「新潟57号」は味度値が高く90程度を示し注目された。また、「東北152号」、「中部70号」、「あこがれ」、「イナバワセ」等は、安定して高い味度値を示した。中生群では、「コシヒカリ」（味度値85）を上回るものが多数見られ、特に「北陸159号」、「岡山56号」、「岡山57号」、「夢つくし」、「東北164号」、「新潟50号」「新潟40号」等が高い味度値を示した。中でも「新潟50号」は安定して高い味度値を示し、中生の中でも一番高かった。中～晩生群では、90を超えるものが多数見られ、「よかはなみ」、「どんとこい」、「ユメヒカリ」、「あじまる」、「ニホンマサリ」、「朝日」等が安定して高い味度値を示した。

出穂期と味度値の関係には、4か年を通じ有意な正の相関が見られ、出穂期の遅いものほど味度値が高
第1表 主な品種・系統の出穂期別味度値

<table>
<thead>
<tr>
<th>品種・系統名</th>
<th>味度値</th>
<th>出穂期</th>
</tr>
</thead>
<tbody>
<tr>
<td>90以上</td>
<td>早生</td>
<td>Bio－3(1), 新潟56号(1), 新潟57号(1), 東北152号(2)</td>
</tr>
<tr>
<td></td>
<td>中生</td>
<td>新潟50号(2), 北陸159号(4), 岡山6号(2)</td>
</tr>
<tr>
<td></td>
<td>晩生</td>
<td>よかはなみ(2), どんとこい(2), エンヒカリ(4), あじまる(3), ニホンマサリ(3), 朝日(3), 白雪姫(3), 星の光(3), ヒノヒカリ(4)</td>
</tr>
<tr>
<td>85以上</td>
<td>極早生</td>
<td>ほぼの稔(3), 新潟55号(1), さらり宮崎(3), 新潟45号(3), 新潟54号(1)</td>
</tr>
<tr>
<td></td>
<td>早生</td>
<td>中部70号(2), 新潟55号(1), あこがれ(2), イナバワセ(3), フジヒカリ(3), 東北160号(3)</td>
</tr>
<tr>
<td></td>
<td>中生</td>
<td>能登ひかり(4), 新潟55号(4), はえぬき(4), 東北147号(4)</td>
</tr>
<tr>
<td>80以上</td>
<td>極早生</td>
<td>こころまち(4)</td>
</tr>
<tr>
<td></td>
<td>早生</td>
<td>ひとめぼれ(4), はなの輝(4), ハナエヒセン(4), ササニシキ(4), どまんなか(4), チョニシキ(4), こころまち(4), チープワセ(4), 越路早生(4), 初星(4)</td>
</tr>
<tr>
<td></td>
<td>中生</td>
<td>ほとがみ(2), びかひち(4), キヌヒカリ(4), 越みのり(4)</td>
</tr>
<tr>
<td></td>
<td>晩生</td>
<td>こころづくし(2), アキヒカリ(4), あかね空(4), アケノホシ(4), ニシヒカリ(4), ハツシモ(4)</td>
</tr>
<tr>
<td>70以上</td>
<td>極早生</td>
<td>かけはし(3), フジノリ(4), つがるおとめ(4), なつのたより(4), レイマ(4), なつのなり(4), ハマアサヒ(4)</td>
</tr>
<tr>
<td></td>
<td>早生</td>
<td>イブキワセ(4), キヨシキ(4), トドキワセ(4), ホウネンワセ(4), ふくひびき(4), アキチカラ(4), はつこしげ(4), わせしまん(4), 新潟早生(4)</td>
</tr>
<tr>
<td></td>
<td>中生</td>
<td>越ひびき(4), サチミロリ(4), オチカラ(4), ゆきの精(4)</td>
</tr>
<tr>
<td></td>
<td>晩生</td>
<td>千秋楽(4), 米山(4), 越かおり(4), 越めたか(4), ホウレイ(2), はつあき(4), 月の光(4)</td>
</tr>
<tr>
<td>60以上</td>
<td>極早生</td>
<td>きたいぶき(4), たかねみのり(4), まいひめ(4), 森田早生(4), 早農林バまり(4), アキヒカリ(4), キタオウ(4)</td>
</tr>
<tr>
<td></td>
<td>早生</td>
<td>農林１号(4), みやかおり(4), トヨシキ(4), 山ひびき(4)</td>
</tr>
<tr>
<td>60未満</td>
<td>極早生</td>
<td>イシカリ(4), オイラセ(4), ウーカ(4), ゆきひびき(4), 南栄(4), きたいぶき(4), ハヤカゼ(4)</td>
</tr>
<tr>
<td></td>
<td>早生</td>
<td>大国早生(4), 妙高高原早生(4)</td>
</tr>
</tbody>
</table>

注) 味度値は、1～4か年の平均値であり、()内は供試年数を示す。
出穂期は、7月23日以前出穂を極早生とし、7月24日～7月31日、8月1日～8月5日、8月6日以降出穂を、それぞれ早生、中生、晚生とした。

第1図 出穂期と味度値の関係

第2図 味度値と玄米品質の関係

—19—
関連度値と窒素含有率が関連度値に有意な傾向を示した（第3図）。玄米に於ては、味度値が高くならなぎ、味度値が下がる傾向が認められた（第1図）。出穂期の早いものは、味度値が低い傾向にあり年次間差が大きかった。

味度値と玄米品質の関係について見ると、玄米品質の劣るものほど、味値が低い傾向を認められた。特に玄米品質が7以上のものは味度値が著しく低下した（第2図）。また、味度値と整粒歩合の間には有意な正の相関が見られ、整粒歩合の高い品種ほど味度値は高くなる傾向が見られた（第3図）。

味度値と白米の窒素含有率の間には有意な負の相関が見られ、窒素含有率が低くなるほど味度値が高くなる傾向が認められた（第4図）。一般に食味を、窒素含有率と負の相関があるといわれているが、味度値と窒素含有率についても同様な関係が認められた。また、味度値とアミロース含有率との間には相関は見られなかった（第5図）。

以上の結果、味度値の品種間差が大きいことが明らかになった。また、味度値は品種・系統の出穂期と関係があり、玄米品質や整粒歩合、窒素含有率とも密接に関係していることが明らかとなった。従って、実際の味度値選抜においては、味度値だけの一律の選抜だけでなく、熟期を考慮した熟期別の選抜を行う必要がある。その際、玄米品質や整粒歩合と組合せた味度値選抜を行うことが一層有効と考えられる。

引用文献
2）星豊一ら 1995. 北陸作物学会報 30：4-6.

（1998年12月9日 受理）