Aboveground Growth, Lodging Resistance, Yield Components and Grain Quality of F1 Rice Grown in the No-tillage Direct Seeding on Well-drained Paddy Field

Yukio KUJIRA*1, Satoko SANO4,4, Yuji NAKAJIMA1, Naoki ENDOU3, Akira UCHIHAMA*1 and Takehi TSUCHIYA*6

(*1Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan, *5Faculty of Agriculture, Shinshu University, *6Ishikawa Agricultural College, *8Mitsui Chemical Co. Ltd.)

乾田不耕起直播栽培したF1水稲品種の地上部生育，押し倒し抵抗値および収量構成要素と品質

乾田不耕起直播栽培したF1品種（MH2003, MH2005）の地上部生育，株あたり押し倒し抵抗値，収量構成要素および玄米の外観品質と食味成分について検討した。施肥条件はLPI区とBB056区とした。施肥の種類によって草丈の伸長に有意差が認められ，MH2005はLP肥料の使用で草丈の抑制効果が認められた。F1品種は押し倒し抵抗値が高く，倒伏耐性に優れていた。2品種とも優れた登熟特性を示していた。F1品種は極晩生品種であるが，乾田不耕起直播栽培が可能であると判断された。

Aboveground growth, lodging resistance, yield and yield components and grain quality of F1 rice cv. MH2003 and MH2005 grown in the no-tillage direct seeding on well-drained paddy field were discussed. Plant length of MH2005 grown with LP fertilizer was significantly decreased compared to BB056 fertilizer plots. Lodging resistance of F1 cultivars was high. MH2003 and MH2005, though extremely late maturing, showed good adaptabilities to no-tillage direct seeding on well-drained paddy field in Hokuriku district.

キーワード：F1品種，乾田不耕起直播栽培，水稲，地上部生育，倒伏抵抗値，ハイブリッドライズ

Key words: Aboveground growth, F1 cultivars, Hybrid rice, Lodging resistance, No-tillage direct seeding of well-drained paddy field, Rice

水稲のF1品種は，hybrid vigorに由来した多収が期待できると言われている。中国ではF1品種の作付け面積が多く，食料供給に関しては大きな貢献を果たしていることから，F1品種の多収性が評価されている。中国におけるF1品種の作付けは全水田面積の半分にあたる1,700haに及んだこともあり，収量で20〜30%の増加が報告されている。

本試験に用いたF1品種は，1994年に三井化学㈱が育成した品種で，父親は中国品種でインディカ系の遺伝子が1/4入っており，親種は日本種である。稈長が1m前後と長く，太い茎を持った大型の草姿を示している。普通品種より茎数は月々で1株の着粒数は極めて多い特徴を持つ，極晩生品種である。2000年3月29日種苗法に基づき品種登録され，「みつかり」シリーズの「2003」と「2005」となった。

環境保全型農業を実践することが世界的な方向としている現状，収量性と環境保全を同時に実現させる農業体系を構築することが必要となっている。本研究では，1）北陸地方におけるF1品種の乾田不耕起直播栽培の可能性について，2）供試したF1品種の生育特性について，特に地上部生育について，3）LP肥料の効果について等の項目を通して，北陸地方におけるF1品種の栽培可能性について，収量および収量構成要素を含めた地上部生育について検討した。

材料および方法

実験は，1999年に前述のF1品種，MH2003およびMH2005を用いて，石川県農業短期大学の圃場において実施した。播種は4月23日に「のどん歩行2条不耕起播植」「を用いて行い，株間15cm，条間30cmとして，1穴あたり5〜6粒の播種密度とした。施肥はLP40区とBB056区の2処理区とした。4月27日に基肥を施用した，追肥は硫酸カリ
を施用し、穂肥はLP有機060号を使用した。5月2日に入水し、穂肥は7月16日に施用した。

登熟期間中における葉色低下が著しかったため、9月24日に尿素を散布した。その他の管理については慣行法に準じて行った。乾田不耕起栽培を他の栽培方法と比較して検討するため、F1品種の湛水直播栽培および移植栽培試験も実施した。湛水土中散播（湛直）栽培は石川農短大の圃場にて実施し（第1表）、慣行法による移植栽培は、金沢大学教育学部関門農場において実施した。施肥および管理状況は第2表に示した通りである。

地上部の生育調査は条にそって1mの長さ（各2箇所）を決め、1mの間に生育する全株を対象として実施した。条1m内の茎数、1mの間に生育する任意の5株の草丈、葉色（SPAD値）を継続調査した。9月27日に、各栽培処理区の各々50株について、株あたり倒伏抵抗値（大起、DIK-7400型）を測定した。収穫後に収量構成要素を測定した。玄米および精米の外観品質および食味は、近赤外食味分析計（静岡製機、GS-2000）の測定結果を用いて評価した。

結果および考察

1. 茎数
生育に伴う条1m内の茎数変化を第3表に示した。LP40区とBB056区を比較すると、MH2005の場合、7月27日のBB056区では163本であるのに対し、LP40区では93.5本であり、BB056区での茎数が有意に多かった（P<0.05）。一方、MH2003では施肥の違いによる有意な差は認められなかった。生育全般を考えると、茎数はBB056区で多い傾向が認められた。また、F1品種間には有意な差異が認められなかった。

2. 草丈
草丈の変化を第4表に示した。MH2005では、7月16日以降BB056区の草丈がLP区よりも有意に高く推移した。しかし、MH2003に関しては、施肥の違いによる有意な差は認められなかった。BB056区における7月27日以降の草丈は、MH2005がMH2003よりも高く推移し、有意差が認められた。一方、LP40区では、7月16日まではMH2003の草丈が有意に大きかったが、その後、有意な差は認められなくなった。MH2005の場合、LP肥料を施用することで草丈の抑制が可能であると考えられた。

3. SPAD（葉色）
葉色変化をSPAD値で表示し第5表に示した。MH2005では、SPAD値による葉色に有意な差は認められなかった。しかし、絶対値としてのSPAD値は生育期間を通して小さく推移していたことから、本栽培条件下では施肥量が不足していたと判断された。

4. 倒伏抵抗値
穂割れ期における株あたりの押し倒し抵抗値を測定した。各処理区とも、各々50株の押し倒し抵抗値を測定した。倒伏数は2回とした。1穂あたりの押し倒し抵抗値を第6表
第4表 草丈の推移

<table>
<thead>
<tr>
<th>実験区</th>
<th>6/30</th>
<th>7/16</th>
<th>7/27</th>
<th>8/12</th>
<th>9/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>32.6±0.9cm</td>
<td>37.4±1.3cm</td>
<td>73.0±2.6cm</td>
<td>85.0±1.0cm</td>
<td>109.0±2.3cm</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>39.0±1.8</td>
<td>44.4±1.6</td>
<td>70.4±2.5</td>
<td>87.8±0.8</td>
<td>110.4±2.1</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>34.2±1.2</td>
<td>39.8±0.8</td>
<td>80.4±2.5</td>
<td>97.4±1.4</td>
<td>120.4±3.6</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>34.6±1.0</td>
<td>41.0±0.9</td>
<td>66.6±0.9</td>
<td>79.8±2.4</td>
<td>102.0±1.8</td>
</tr>
<tr>
<td>2005 湯直</td>
<td>44.8±1.8</td>
<td>62.8±2.4</td>
<td>84.4±0.4</td>
<td>103.0±2.4</td>
<td></td>
</tr>
<tr>
<td>2003 湯直</td>
<td>48.0±1.3</td>
<td>62.8±2.0</td>
<td>81.6±2.0</td>
<td>109.4±2.2</td>
<td></td>
</tr>
</tbody>
</table>

LSD (P<0.05) | 2.93 | 3.53 | 5.93 | 4.26 | 6.83 |

平均値±標準誤差 (n = 5)

第5表 葉色（SPAD値）の推移

<table>
<thead>
<tr>
<th>実験区</th>
<th>6/30</th>
<th>7/16</th>
<th>7/27</th>
<th>8/12</th>
<th>9/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>35.6±0.7</td>
<td>34.9±0.7</td>
<td>39.3±0.8</td>
<td>36.0±0.6</td>
<td>34.6±1.2</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>38.7±1.0</td>
<td>37.5±0.7</td>
<td>39.0±1.0</td>
<td>37.4±0.9</td>
<td>31.4±0.6</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>34.9±0.4</td>
<td>33.8±0.6</td>
<td>39.7±0.5</td>
<td>37.5±0.6</td>
<td>33.8±0.8</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>33.8±0.9</td>
<td>35.2±0.4</td>
<td>38.0±1.0</td>
<td>32.7±0.6</td>
<td>31.5±1.2</td>
</tr>
<tr>
<td>2005 湯直</td>
<td>38.7±1.1</td>
<td>39.2±1.6</td>
<td>34.2±1.4</td>
<td>31.8±0.3</td>
<td></td>
</tr>
<tr>
<td>2003 湯直</td>
<td>40.6±0.8</td>
<td>38.4±1.5</td>
<td>32.4±0.5</td>
<td>31.6±1.2</td>
<td></td>
</tr>
</tbody>
</table>

LSD (P<0.05) | 2.4 | 2.2 | 3.3 | 3.0 | 2.7 |

平均値±標準誤差 (n = 5)

5. 収量および収量構成要素

収量および収量構成要素を第7表に示した。乾田不耕起直播F1品種の収量は500kg/10a未満となり、1999年の収量レベルは高くはなかった。本実験の生育期間全般にわたり葉色が薄く（SPAD値が小さい）推移し、葉数、穂数および1穂均の収穫数が減少したことが収量低下の主な原因と考えられた。1998年におけるF1品種の移植栽培試験では、677kg/10a（MH2003）と、623kg/10a（MH2005）の収量性を示していたが（鯨ら、1999）、1999年の慣行移植栽培試験によるF1品種では、485.6kg/10a（MH2005）と513.5kg/10a（MH2003）と、低い収量性を示していた（鯨ら、2000）。

第6表 押し倒し抵抗値の変異

<table>
<thead>
<tr>
<th>実験区</th>
<th>押し倒し抵抗値 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>177.3±8.5</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>158.5±5.7</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>185.9±10.0</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>216.8±6.3</td>
</tr>
<tr>
<td>2005 湯直</td>
<td>219.8±15.7</td>
</tr>
<tr>
<td>2003 湯直</td>
<td>157.7±6.3</td>
</tr>
</tbody>
</table>

LSD (P<0.05) | 26.1 |

平均値±標準誤差 (n = 5)

押し倒し抵抗値の品種の違い

<table>
<thead>
<tr>
<th>品種</th>
<th>押し倒し抵抗値 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 全体</td>
<td>181.6</td>
</tr>
<tr>
<td>2003 全体</td>
<td>187.6</td>
</tr>
</tbody>
</table>

%、BB056区では85％であった。MH2003では、LP区が80.1％であったのに対しBB056区では88.4％を示した。1穂の枝梗配置の違いによる登熟歩合を、詳細に検討した。第8表に示した。1穂の枝梗のうち、上位3本の枝梗を上位、下位3本の枝梗を下位、残りの枝梗を中位として、枝梗の位置別による登熟歩合を推定により調査した。比較1.06で評価した場合、下位の枝梗でも高い登熟歩合を示す傾向が認められた。比較1.16で選別した場合でも、MH2005の
第7表 収量および収量構成要素

<table>
<thead>
<tr>
<th>実験区</th>
<th>稲玄米量 (g/㎡)</th>
<th>稲数 (本/㎡)</th>
<th>1穂粒数</th>
<th>登熟歩合 (d=1.06)</th>
<th>登熟歩合 (d=1.16)</th>
<th>千粒重 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 LP40</td>
<td>469.0</td>
<td>10.1</td>
<td>101</td>
<td>80.1</td>
<td>67.8</td>
<td>20.5</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>424.1</td>
<td>8.95</td>
<td>111</td>
<td>85.0</td>
<td>63.2</td>
<td>18.7</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>423.4</td>
<td>7.05</td>
<td>115</td>
<td>88.4</td>
<td>72.1</td>
<td>21.1</td>
</tr>
<tr>
<td>2005 湘直</td>
<td>11.1*</td>
<td>5.9</td>
<td>113</td>
<td>93.9</td>
<td>56.8</td>
<td>19.0</td>
</tr>
<tr>
<td>2003 湘直</td>
<td>14.3*</td>
<td>6.7</td>
<td>93</td>
<td>92.5</td>
<td>70.7</td>
<td>20.5</td>
</tr>
<tr>
<td>2005 移植</td>
<td>485.6</td>
<td>12.0</td>
<td>133</td>
<td>91.9</td>
<td>73.7</td>
<td>20.0</td>
</tr>
<tr>
<td>2003 移植</td>
<td>513.5</td>
<td>11.5</td>
<td>137</td>
<td>94.6</td>
<td>85.2</td>
<td>20.9</td>
</tr>
</tbody>
</table>

* g/株

第8表 登熟歩合の処理間差異

<table>
<thead>
<tr>
<th>実験区</th>
<th>上位</th>
<th>中位</th>
<th>下位</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>82.1</td>
<td>79.9</td>
<td>71.0</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>81.1</td>
<td>79.3</td>
<td>83.0</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>97.3</td>
<td>83.2</td>
<td>80.1</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>89.7</td>
<td>88.3</td>
<td>86.8</td>
</tr>
<tr>
<td>2005 湘直</td>
<td>92.5</td>
<td>89.9</td>
<td>86.5</td>
</tr>
<tr>
<td>2003 湘直</td>
<td>93.8</td>
<td>90.7</td>
<td>96.2</td>
</tr>
<tr>
<td>2005 移植</td>
<td>96.4</td>
<td>90.9</td>
<td>92.3</td>
</tr>
<tr>
<td>2003 移植</td>
<td>96.0</td>
<td>94.8</td>
<td>92.4</td>
</tr>
</tbody>
</table>

単位: %

第9表 稲米および精白米の外観品質

<table>
<thead>
<tr>
<th>実験区</th>
<th>良質粒(%)</th>
<th>未熟粒(%)</th>
<th>被害粒(%)</th>
<th>死米(%)</th>
<th>着色粒(%)</th>
<th>開割粒(%)</th>
<th>格付け</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>68.8</td>
<td>20.9</td>
<td>6.9</td>
<td>3.1</td>
<td>0.3</td>
<td>1.6</td>
<td>B</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>79.0</td>
<td>12.6</td>
<td>7.4</td>
<td>9.1</td>
<td>0.9</td>
<td>1.6</td>
<td>A</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>76.9</td>
<td>16.8</td>
<td>3.8</td>
<td>2.3</td>
<td>0.2</td>
<td>1.2</td>
<td>B</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>83.0</td>
<td>8.5</td>
<td>8.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
<td>S</td>
</tr>
<tr>
<td>2005 湘直</td>
<td>82.3</td>
<td>10.8</td>
<td>6.4</td>
<td>0.5</td>
<td>0.0</td>
<td>0.1</td>
<td>A</td>
</tr>
<tr>
<td>2003 湘直</td>
<td>88.3</td>
<td>2.9</td>
<td>8.0</td>
<td>0.7</td>
<td>0.1</td>
<td>0.6</td>
<td>A</td>
</tr>
<tr>
<td>2005 移植</td>
<td>73.4</td>
<td>22.4</td>
<td>0.3</td>
<td>3.9</td>
<td>0.0</td>
<td>0.3</td>
<td>A</td>
</tr>
<tr>
<td>2003 移植</td>
<td>93.8</td>
<td>3.1</td>
<td>2.2</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td>B</td>
</tr>
</tbody>
</table>

目視評価 80以上 10以下 5以下 5以下 0 3以下

格付け基準
S：全てがSランクの場合
A：B・Cランクがなく、1つでもAランクがある場合
B：Cランクがなく、1つでもBランクがある場合
C：1つでもCランクがある場合

GS-2000：静岡製機

<table>
<thead>
<tr>
<th>実験区</th>
<th>白度</th>
<th>良質粒(%)</th>
<th>粉状質(%)</th>
<th>被害粒(%)</th>
<th>着色粒(%)</th>
<th>開割粒(%)</th>
<th>格付け</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 LP40</td>
<td>35.0</td>
<td>93.7</td>
<td>5.5</td>
<td>0.8</td>
<td>0</td>
<td>0.6</td>
<td>S</td>
</tr>
<tr>
<td>2003 LP40</td>
<td>36.6</td>
<td>96.5</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>S</td>
</tr>
<tr>
<td>2005 BB056</td>
<td>36.1</td>
<td>94.0</td>
<td>5.9</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>S</td>
</tr>
<tr>
<td>2003 BB056</td>
<td>36.0</td>
<td>98.3</td>
<td>1.7</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>S</td>
</tr>
<tr>
<td>2005 湘直</td>
<td>36.5</td>
<td>94.9</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>S</td>
</tr>
<tr>
<td>2003 湘直</td>
<td>34.8</td>
<td>99.1</td>
<td>0.8</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>2005 移植</td>
<td>37.1</td>
<td>94.9</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>S</td>
</tr>
<tr>
<td>2003 移植</td>
<td>37.0</td>
<td>99.1</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>S</td>
</tr>
</tbody>
</table>
第10表 玄米および精白米の食味関連成分

<table>
<thead>
<tr>
<th>実験区</th>
<th>水分(％)</th>
<th>タンパク(％)</th>
<th>アミロース(％)</th>
<th>密度度(％)</th>
<th>老化性(％)</th>
<th>スコア</th>
<th>総合評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>LP40</td>
<td>16.0</td>
<td>9.3</td>
<td>19.3</td>
<td>25</td>
<td>86</td>
<td>54</td>
</tr>
<tr>
<td>2003</td>
<td>LP40</td>
<td>15.9</td>
<td>9.1</td>
<td>19.2</td>
<td>20</td>
<td>83</td>
<td>57</td>
</tr>
<tr>
<td>2005</td>
<td>BB056</td>
<td>15.7</td>
<td>9.1</td>
<td>18.7</td>
<td>25</td>
<td>83</td>
<td>58</td>
</tr>
<tr>
<td>2003</td>
<td>BB056</td>
<td>16.1</td>
<td>9.1</td>
<td>19.2</td>
<td>20</td>
<td>83</td>
<td>56</td>
</tr>
<tr>
<td>2005</td>
<td>湧直</td>
<td>15.9</td>
<td>8.2</td>
<td>19.8</td>
<td>22</td>
<td>86</td>
<td>66</td>
</tr>
<tr>
<td>2003</td>
<td>湧直</td>
<td>15.8</td>
<td>8.6</td>
<td>19.5</td>
<td>20</td>
<td>83</td>
<td>61</td>
</tr>
<tr>
<td>2005</td>
<td>移植</td>
<td>15.7</td>
<td>8.6</td>
<td>19.0</td>
<td>15</td>
<td>82</td>
<td>63</td>
</tr>
<tr>
<td>2003</td>
<td>移植</td>
<td>15.6</td>
<td>8.5</td>
<td>18.8</td>
<td>10</td>
<td>74</td>
<td>67</td>
</tr>
</tbody>
</table>

食味成分・特性（精白米）

<table>
<thead>
<tr>
<th>実験区</th>
<th>水分(％)</th>
<th>タンパク(％)</th>
<th>アミロース(％)</th>
<th>老化性(％)</th>
<th>スコア</th>
<th>総合評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>LP40</td>
<td>15.5</td>
<td>8.5</td>
<td>20.5</td>
<td>83</td>
<td>55</td>
</tr>
<tr>
<td>2003</td>
<td>LP40</td>
<td>15.4</td>
<td>7.7</td>
<td>20.2</td>
<td>82</td>
<td>62</td>
</tr>
<tr>
<td>2005</td>
<td>BB056</td>
<td>15.3</td>
<td>7.8</td>
<td>20.2</td>
<td>83</td>
<td>61</td>
</tr>
<tr>
<td>2003</td>
<td>BB056</td>
<td>15.6</td>
<td>7.9</td>
<td>20.1</td>
<td>82</td>
<td>61</td>
</tr>
<tr>
<td>2005</td>
<td>湧直</td>
<td>15.3</td>
<td>7.4</td>
<td>20.3</td>
<td>83</td>
<td>63</td>
</tr>
<tr>
<td>2003</td>
<td>湧直</td>
<td>15.1</td>
<td>7.9</td>
<td>20.6</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>2005</td>
<td>移植</td>
<td>14.9</td>
<td>7.6</td>
<td>19.8</td>
<td>80</td>
<td>63</td>
</tr>
<tr>
<td>2003</td>
<td>移植</td>
<td>15.0</td>
<td>7.6</td>
<td>19.8</td>
<td>78</td>
<td>65</td>
</tr>
</tbody>
</table>

LP40区を除いて比較的高い登熟程度を示していた。本試験では、施施肥直段量が不足した生育環境であったことは既
に述べたが、施施肥を十分に与えた場合、これらのF1品
種は高い登熟特性を示すことが示唆される。1穂の下位枝
桿の登熟程度と根の活性との間には密接な関連性がある
との指摘があるが（王，1992，1995），根の活性と登熟との
関連性に関する考察は今後の課題である。

6．食味成分分析

近赤外食味分析計（静岡製機，GS-2000）を用いて、玄
米および精白米の食味成分（第10表）と外観品質（第9表）
の評価を行った。玄米の外観品質では、良質粒歩合が低かった。
精米後の外観品質では良質粒歩合が高くなっていたが、
これは当然の結果と判断される。玄米の食味成分としては、
タンパク質含有量が9.0％以上と高い値を示し、アミロース
含有量も19％前後の値を示していたが、精白米のタンパ
ク含有量は8％前後の値となった。食味成分を評価する分析
機器は複数のメーカーから販売されており、同一サンプル
であっても測定機種の違いによって異なる値が表示され
ることが一般的である。本試験で用いた静岡製機の食味計
で示される数値は、他の機種（例えば、クック）で測定し
た値よりも高い値で表示された。食味に関わる評価を食味
計の数値で表示し、更にランキング付けすることの問題点
は、このような事例からも指摘されるところである。食味
とタンパク質含有量との関連性については、タンパク粒
の問題がある、タンパク類粒 I と II（Protein Body I
and II）は胚乳の中に含まれ、タンパク類粒 III（Protein
Body III）は胚または雛層線に含まれている。精白米を炊飯
して食える場合にはProtein Body IIIの含有量は無関係と
なるため、絶対値として表示される玄米中のタンパク含有
量の評価は複雑になることがある。本試験で用いたF1品種は
短粒品種であり、食味成分分析の結果にかかわらず、炊飯
米の官能検査では高い評価が得られている。

本試験の結果、北陸地方におけるF1品種の乾田不耕起
直接栽培は可能であると考えられた。本試験に供したF1品
種（MH2003, MH2005）は倒伏抵抗性に優ればかりか
登熟特性もよいと判断され、これらの特性が直接栽培性に
関連してくると判断された。MH2005の場合には、LP肥
料の施用で草丈の抑制効果が認められ、使用する肥料の選
択技によって倒伏に影響する草丈の抑制が可能であること
も示された。本試験では収量性が低かった、これは、前述
の通り施肥絶対量の不足に起因した葉色の低下、種数と1
穂服数の不足が原因であったことから、施肥量を増加さ
せることによる収量増加は確実に可能であると判断される。
1穂の下位枝稈（下位から3本）の登熟歩合と根の活性
との関連性については、現在精査中である。

謝辞

本研究を実施するにあたり、金沢大学教育学部の湯泽佳
代、吉村誠美、狩野紫子の協力を得た。また、圃場管理
に関して、石川県農業短期大学作物研究室の学生諸氏の協
力を得た。記して感謝いたします。

本研究の一部は、文部省科学研究課（番号11660015）と
三井化学総合委託研究費により行った。
引用文献

（2000年11月30日受付，2001年2月13日受理）