The Horticulture Journal
Online ISSN : 2189-0110
Print ISSN : 2189-0102
ISSN-L : 2189-0102
ORIGINAL ARTICLES
Nondestructive Detection of Split Pit in Peaches Using an Acoustic Vibration Method
Ryohei NakanoHidemi AkimotoFumio FukudaTakashi KawaiKoichiro UshijimaYosuke FukamatsuYasutaka KuboYuichiro FujiiKen HiranoKunihisa MorinagaNaoki Sakurai
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2018 Volume 87 Issue 2 Pages 281-287

Details
Abstract

Split-pit in peach fruit is a problematic disorder. Split-pit fruit cannot be detected based on external appearance, and contamination of fruit by split-pit reduces its reliability in the marketplace. Here, we demonstrate that split-pit fruit can be identified by a nondestructive acoustic vibration method and a unique approach based on the ratio of the third (f3) to the second (f2) resonant frequency. The response-resonant frequency spectra showed that the peaks of f2 frequencies in split-pit fruit were shifted to much lower values than those in normal fruit, whereas those of f3 frequencies showed only small shifts. The calculated f3/f2 ratios in most normal fruit were in the range of 1.35–1.4, whereas those in split-pit fruit were 1.45–2.0. Analysis of more than 300 fruit samples revealed that by setting the f3/f2 cut-off value at >1.45, 95% of split-pit fruit in the fruit samples were detected, whereas only 1.5% of normal fruit were missorted as split-pit fruit. A model for simulating the vibration properties of peach fruit was developed by using the finite element method. The simulated vibration patterns showed that f3/f2 values were increased by the insertion of split pit, indicating that, at least partially, the observed high f3/f2 values in split-pit fruit directly reflected split-pit occurrence. These results clearly demonstrate that the use of f3/f2 ratios obtained using an acoustic vibration method can effectively detect fruit with split-pit. The possibility of installing acoustic vibration devices in peach sorting lines and the application of portable devices to unpicked fruit on the tree are discussed.

Content from these authors
© 2018 The Japanese Society for Horticultural Science (JSHS), All rights reserved.
Previous article Next article
feedback
Top