シードテーブと紙マルチの組み合わせによる葉根菜栽培の試み

中島 譲・森田隆史∗・片岡圭子・札埜高志・河瀬晃四郎

京都大学大学院農学研究科附属農場 569-0096 大阪府高槻市八丁畑町

The Trial of Leaf and Root Crops Cultivation Using Paper Mulch Combined with Seed Tape

Yuzuru Nakajima, Takashi Morita*, Keiko Kataoka, Takashi Fudano, Koshiro Kawase

Experimental Farm, Graduate School of Agriculture, Kyoto University, Takatsuki, Osaka 569-0096

Summary

To apply mulch for leaf and root crop cultivation with high planting density, we tried to use a paper mulch combined with seed tape, which allows simultaneous mulch installation and seed sowing. When growing Komatsuna (Brassica Campestris L.) and turnip using the trial paper mulch, a rate of germination exceeding 90% was obtained. For radishes and carrots, the rate of germination exceeded 80%. In Komatsuna culture, growth and yield were improved using this mulch rather compared to that using seed tape without mulch. Moreover, the labor hours for weeding were shortened to about 10% using mulch culture compared to that without mulch culture.

キーワード： 紙マルチ，シードテーブ，省力，葉根菜類

緒言

紙マルチは環境に負荷の少ないマルチ資材として注目されている。これまで紙マルチはその昇温防止効果から主に高温期におけるレタス（稲江井・伊藤，1999），キャベツとハクサイ（前倉・岡崎，1998），ダイコンなど（前倉，1999）の栽培に適用され，その有効性が示唆されている。またボリュームと比べて使用後の撤去が不要という特長がある。しかし，紙マルチは耐久性などの問題から，その普及は限定的なものとなっている。紙マルチの普及には，その特性を良く理解した上で，紙マルチに適した使用場面を拡大していくことが必要であると思われる。

栽植密度の高い葉根菜栽培へのボリュームの適応は難しい。これは植え孔と苗の位置を正確に合わせる必要があるため，大きな手間と労力を要するからである。一方，これらの葉根菜類では直接栽植が一般的であり，生育初期の雑草との競合が問題となるため，マルチの有効性は大きいものと考えられる。しかし，栽植密度の高い葉根菜栽培に適した方法は，ホウレンソウにおいて茂木・岩田（1985）や田中ら（2001）の報告などがある

材料および方法

葉根菜用試作紙マルチの作製

試作了マルチ資材（以下，本論では試作紙マルチと記す）の製造を第1図に示した。具体的な製作法は以下の通りである。紙マルチにはロータリーマルチ（三和コーポレーション）を用いた。このマルチは白色の再生紙に黑色の生分解性ポリエチレンコーティングした二面構造になっており，従来の紙マルチと異なり水を通さない性質を持っている。実験ではすべて白色面を表として使用した。

紙マルチ（実験1: 厚さ55cm，実験2: 厚さ57cm）に各作業の栽植間隔に合わせた4列の植え孔（直径約1cm）を開け，シードテーブを各列に沿うようにテーブで貼り，種子が植え孔部にくるように調節した。

実験1. 試作紙マルチにおける葉根菜類の出芽の様相

材料としてコマツナ‘極楽天’，ハツカダイコン‘ヘッジッド’，カブ‘夏山頂’，ホウレンソウ‘おおもやん’およびニンジン‘新黒田五寸’を使用した。実験は本学農場のガラ

2003年2月6日 受付，2003年6月20日 受理

本報告の一部は平成13および14年度国際学会近畿支部大会で発表した。

*Corresponding author. E-mail: moritat@ccms.meijo-u.ac.jp

現在: 名城大学農学部附属農場 486-0804 愛知県春日井市

293
ス温室内にて行った。試作紙マルチの設置方法を第2図に示した。2002年7月12日に幅55cmのペットに試作紙マルチを展開し、マルチ全面に手作業で1cm程度の覆土を行った（紙マルチ区）。また、コマツナのみ無マルチのうねにシードテープを用いて播種する区（無マルチ区）を設けた。栽培密度はコマツナ、ハッカダイコンおよびホウレンソウで株間5cm、カブおよびニンジンで株間10cmの1株播きとし、条間はすべて10cmで4条植えとした。すべての区について乾燥防止のために二重にした白の寒冷舗の下にベタにつけ行った。ベタがなければコマツナ、ハッカダイコンおよびカブで播種後3日目、ニンジンおよびホウレンソウで播種後7日目に除去した。午前8時と午後5時の1日2回、各3分間浸水を行った。播種後3、5、7および11日目に出芽の様相を観察するとともに出芽率を調査した。

実験2. 試作紙マルチを利用して栽培したコマツナの生育-収穫および作業時間

材料にはコマツナ'極楽天'を供試した。播種日は2000年7月7日、9月4日、10月19日および11月17日とし、計4回の実験を行った。7月7日から10月19日播種の3回の実験は露地は場で、11月17日播種の実験はガラス温室内で行った。施肥量は各1a当たり苦土石灰7.5kgおよび磷酸安加里（16-10-14）10kgとした。ベットに試作紙マルチを展開し、専用の管理機（共立エコ変種、リターンカルテKR700/87）でマルチ全面に1cm程度の覆土を行った（紙マルチ区）。対照はシードテープのみを設置した（無マルチ区）。栽培密度は株間5cm、条間15cmの4条（6700本/ha）とし、1粒播きとした。生育期間中は1週間毎に生育調査として葉長を、また収穫時に収穫調査として地上部重（FW）、地下部重（FW）、葉長、葉幅および葉数を測定した。

また、9月4日播種の実験のそれを見るために除草に要する時間を、10月19日播種の実験において播種作業時間を測定した。除草は播種後2週間目の9月18日に行った。なお、紙マルチの被覆が土壌内環境に及ぼす影響を調査するため、播種を行わず植え孔を開けていない紙マルチのみを設置する区（紙マルチ区）および褶紙シートーで圧縮のみ行う区（無マルチ区）を設定し、土壌硬度および土壌水分の変化を10月31日から12月8日までそれぞれ3日毎、1週間毎に測定した。土壌硬度については、土壌硬度計を用いて地表面付近にて測定を行った。土壌水分については地下10cm付近の土壌を抜き取り、土壌の含水率（含水率=（生土重-乾燥土重）/生土重×100）の推移を測定した。また、11月17日播種の実験期間中の気温（地上10cm）、および地温（地下20cm）を調査した。

結 果

実験1. 試作紙マルチにおける葉根類の出芽の様相

まず、コマツナについてみると、播種後3日目には紙マルチ区と無マルチ区の出芽率は80％以上、播種後7日目時での出芽は90％以上で（第1表）。正常な出芽が観察された（第3表）。次に、カプなどで、試作紙マルチを用いて播種した場合の出芽率をみたところ、カプでは播種後3日目に出芽率が90％を超え、ハッカダイコンでは5日目に出芽率80％を超える出芽率が出た。ニンジンでも播種後11日目に出芽率が80％を超えた。しかし、ホウレンソウでは最終的な出芽率は40％程度であった。

第1表 試作紙マルチを用いた葉根類の出芽率

<table>
<thead>
<tr>
<th>作物名</th>
<th>処理区</th>
<th>3日目</th>
<th>5日目</th>
<th>7日目</th>
<th>11日目</th>
</tr>
</thead>
<tbody>
<tr>
<td>コマツナ</td>
<td>紙マルチ</td>
<td>88 a</td>
<td>92 a</td>
<td>92 a</td>
<td>92 a</td>
</tr>
<tr>
<td></td>
<td>無マルチ</td>
<td>87 a</td>
<td>93 a</td>
<td>95 a</td>
<td></td>
</tr>
<tr>
<td>ニンジン</td>
<td>紙マルチ</td>
<td>0</td>
<td>18</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>無マルチ</td>
<td>93</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>カブ</td>
<td>紙マルチ</td>
<td>79</td>
<td>83</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>無マルチ</td>
<td>2</td>
<td>35</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

注）播種後11日目未満を以下

注）播種後11日目未満を以下
第3図 試作紙マルチを利用した栽培におけるコマツナの育成の様相

第4図 試作紙マルチを利用した栽培におけるコマツナの育成の様相

第5図 紙マルチの有無が土壌密度および土壌の含水率に及ぼす影響

実験2 試作紙マルチを利用して栽培したコマツナの生育・収量および作業時間

すべての実験において、コマツナの育成長は紙マルチ区と無マルチ区で比較したところ、生育初期にはほとんど差はなかったが、生育後期になると紙マルチ区で大きくなる傾向が見られた（第4図）。株重は7月7日播種区および10月19日播種区で紙マルチ区の方が有意に大きかったが、9月4日および11月7日播種区では処理区間に差がなかった（第2表）。

第2表 播種期および試作紙マルチの有無がコマツナの収量に及ぼす影響

第3表 試作紙マルチの利用によるコマツナの作業時間

第4表 紙マルチがコマツナハウス栽培期間中の気温および蒸発の推移に及ぼす影響

考察

葉根葉の栽培では斎一で高い出芽率が要求される。本実験ではコマツナおよびカブの最終的な出芽率が90％
を越えた。またニンジンおよびハツカダイコンにおいても最終的な発芽率は80％を超え、このことからこれら葉根菜類では試作した紙マルチの適用が可能であると考えられた。ホウレンソウについては40％程度と低い出芽率であったが、これは本実験の期間が高温期にあったことや浸水による種子処理を播種前に行わなかったことが原因と考えられる。

本実験では試作紙マルチによって栽培密度の高い葉根菜栽培においてもマルチの効果が得られ、無マルチ区に比べてコマツナの生育・収量が増加する傾向が認められた。また、マルチには土壌物理性の保持効果や土壌水分の保水効果（塚江井・伊藤、1999）があることが知られている。今回おなしてのマルチ栽培によっても同様な効果が得られた。なお、雑草防除効果に加えて、このような土壌環境の安定化がコマツナの生育促進や収量増に寄与した考えられる。

葉根菜の直播栽培では生育初期に雑草との競合が問題になるため、雑草の生え盛りの時期には除草作業は不可欠である。本実験では試作紙マルチを用いることで除草作業を大幅に省力化することができ、このマルチでは植え孔部に固定されており、種子が植え孔の位置からずれることがないため、植え孔を小さくすることが可能である。このことはマルチの抑芽効果に大きく寄与するものと考えられる。また、マルチ全区域に土を載せて固定しており、風雨などによるマルチの破れを回避できるため、露地での長期栽培においてもこの抑芽効果が持続されると考えられる。なお、第2図に示したようにマルチ上の土にはね面から水が供給されないため、ここから雑草が発生することはなかった。

これらのことから、本実験で試作した紙マルチを用いることで栽培密度の高い葉根菜の栽培においてもマルチの使用が可能となり、播種、間引きおよび除草などの作業の省力化、また土壌内の安定化とそれにともなう作物の生育促進、収量増、生育期間の短縮などの効果が得られる可能性が示唆された。

今後、本実験で試作した紙マルチを実用化するにあたっては、水溶性紙などを用いることによるマルチの植え孔部分に種子を挿込み種子封入型の紙マルチの開発が考えられる。また、本実験で用いた紙マルチの黒色面は吸水性であり、ホウレンソウのような播種前処理を行う作物にとって、種子を挿込み素材に水溶性でない生育条件のシートを用いることでマルチごとに浸水処理が可能と思われる。

しかし、実用化する上でいくつかの問題点も挙げられる。マルチ上で載せた土は乾燥しやすく、乾燥が酷くなると植え孔付近の土に含まれる水分まで吸収してしまい、作物の出芽を妨げることがある。このことから出芽までの期間は水分管理を徹底する必要がある。例えば本実験の場合においては無効な手段であると考えられる。今回実験ではマルチ全面に覆土する際の管理を用いたが、この方法で均一な覆土が難しい。この点については、あらかじめ細かく砕いた土を均一に覆土していく専用の機械の開発が必要となるかもしれない。さらに、マルチの製品化についてもコストの問題がある。実用化にあたってはマルチによる増収や作業の省力化の効果がそのコストに見合うかどうかについて調査を行う必要があるであろう。種子を封入したマルチの保存については、マルチごと袋に入れ密封し、出来るだけ早く使用することが必要である。これらについては、今後さらに検討を加えたい。

摘 要

栽培密度の高い葉根菜栽培にマルチを適用するため、マルチの配置と播種作業を同時に行うことができることをシードテープと紙マルチを組み合わせた資材の使用を試みた。試作紙マルチを用いた栽培においてコマツナおよびカブでは90％超える出芽率が得られ、ハツカダイコンおよびニンジンでも80％以上の出芽率が得られた。また、試作紙マルチを用いたコマツナ栽培では、シードテープを用いて播種した無マルチ区に比べて生育が促進され、収量も増加する傾向にあった。さらにこのマルチを用いた栽培により、除草作業に要する時間は約1/10まで縮短された。

謝辞
本研究で作物を栽培するにあたっては京都大学大学院農学研究科附属農場の柳原俊雄、西川浩次、奈良伸、楠見浩二の技官各氏に適切なご指導と多大なるご協力を持たせて頂いた、ここに謹んで感謝の意を表する。

引用文献

塚江井清隆・伊藤武志、1999。紙マルチの特性と秋どりレタスの収量性に及ぼす効果。愛知県農総研試報、31：97-102。
熊倉裕史、1999。紙マルチを野菜栽培に導入するための技術開発の現状。農技研、74：1297-1306。
熊倉裕史・岡崎宏一郎、1998。紙マルチ資材の葉菜類への適用。近畿中国農研、96：21-25。
茂木正道・田中正久、1985。ポリマルチ栽培における栽培密度がホウレンソウの生育・収量に及ぼす影響。群馬農業研究、D編、1：16-24。
田中和夫・熊倉裕史・鰻巖雅浩、2001。ホウレンソウ栽培における紙マルチ利用技術の開発。農技研、76：397-401。