ブルーベリーの促成栽培におけるマルナバチの利用と品種選択

葉 玉恵1・青木宣明2・古賀尚幸2*・加古哲也2

1鳥取大学大学院薬学研究科 680-8553 鳥取市福田
2鳥取大学生物資源科学部 690-8504 松江市西川

Efficiency of Bumble Bees (Bombus (Bombus) terrestris L.) as Pollinators and Cultivar Selection of Blueberries for Forcing Culture

Yu-hong Ye1, Norikazu Aoki*, Naoyuki Konishi2 and Tetsuya Kakó2

1United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553
2Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504

Summary

This study was investigated to clarify the efficiency of bumble bees (Bombus (Bombus) terrestris) as pollinators, and the cultivar selection of blueberries for forcing culture. The flowering and harvesting dates were accelerated by heating cultivation, and the percentages of berry sets were improved by pollination with bumble bees. However, the difference in the berry set percentage was caused by cultivars and forcing time. The percentage of berry set was increased in “Tifblue” but not in “Northland” by GA treatment. However, this treatment caused retardation of the harvesting period and produced lightweight berries. While forcing culture from late February, very early to mid-fruiting cultivars of northern highbush or half-high blueberries were usable as they could be harvested during May. It was also indicated that bumble bees were very efficient pollinators of blueberries.

キーワード：ブルーベリー，GA処理，品種選択，マルナバチ，促成

緒 言

近年ブルーベリーは，機能性食品として目光を浴び，栽培面積の増加とあいまって，高価格での流通に掛からない促成栽培が注目されている．しかし，促成栽培に関する研究論文は少なく（青木・織田，1996：織田ら，1994）また栽培例であるため，促進空間を利用した促成栽培にあっては問題点も多い．そこで本研究では，促進栽培（加温温室）において反応昆虫としてのマルナバチの有効性を促成（暖地から温室に搬入後直ちに加温）開花時期と収穫時期との関係を調査するとともに，果実形質などについて，樹種別・品種別のそれぞれ1-2品種を供試して調査し，促成栽培での早期収穫に有効な種の選択を試みた。

材料および方法

実験１．マルナバチの放散が結果率と収穫期の果実形質に及ぼす影響

本実験は2002年，鳥取大学（鳥取県松江市）で実施し，2003年6月22日 受付，2003年11月17日 受理

*Corresponding author. E-mail: aoki@life.shimane-u.ac.jp

** 編集：山崎敏彦（著）

た．早期収穫可能な品種を選抜する目的で，ノーザンハイブリッドブルーベリー“Weymouth”，“Earliblue”（早生），“Patriot”（早生），“Berkeley”（中型），“Darrow”（晚生）並びにノーマルハイブリッドブルーベリー“Northland”（早生）の各品種（8号グラスフィリット植え付け可能な植え木3年生植え）を供試した．温室開花日（温室に加温し促成栽培を開始）は2月23日，各品種ともマルナバチ1群を放散した区（以下促進栽培区）とネットをかけない，マルナバチ群から隔離した無促進栽培区を設置した．また，対照区として保護栽培区（同業栽培区）を設け，全品種全促進栽培区とも3区を供試した．なお，対照区栽培数は，“Weymouth”では30株，“Patriot”では40株，“Earliblue”と“Northland”では30株，“Berkeley”と“Darrow”では25株に，それぞれ設設えた．

実験２．促成栽培時期，GA処理並びにマルナバチ放散が収穫期，結果率および果実形質に及ぼす影響

“Northland”（8号グラスフィリット植え付け可能な植え木3年生植え）とラピッドアイブルーベリー“Tifblue”（早生，同様な3年生植え）を供試した．2002年2月9日，23日，3月9日の各促進栽培日に，それぞれマルナバチ放散区，GA処理区（花期の濃開期に2000ppmのGA3水溶液を花
房にスプレー）、処理区を設定し、別に比較区として露地区を設けた。苗品種、処理区とも3種を試験した。なお当たりの花序数は、'Northland'では30個、'Tifblue'では55個に抑え、促成区の受粉源として、'Northland'の2月9日促成区ではハーフハイブルーベリー 'Tophat'とサザンハイブリッドブルーベリー 'Sunshineblue'を、2月23日と3月9日促成区では、前述の2品種に加え、実験1の品種を供試した。一方、'Tifblue'では、各促成開始日とともにラピットアイブルーベリー 'Woodard'と 'Gloria'の2品種を供試した。

実験1、2とも、315㎡の加温温室内で実施したが、促成時の栽培温度は、マルハナバナが行動を開始すると言われている最低気温（5℃）を目標、15℃を基準に加温管理した。

調査項目は、実験1、2とも、実験期間中の気温に加え、外気温、小花数/花序、花序形質（花冠長、花冠長）、マルハナバナの花序行動数、潮日数、収穫盛期、結果率、果実形質（果重、可溶性固形物含量、糖度酸度）とした。なお、マルハナバナの花序行動数の調査は、潮日と養天日の午前11時に行い、マルハナバナの花序行動数と照度を測定し、それぞれ10日に1回の平均で示した。

かん水は乾燥の程度を見ながら、また施肥は実験開始時に元肥として油粕10g/株（N: 5.5%）、開花終了時に油粕10g/株の追肥を行った。

結果

栽培期間中の温度は第1回に示したとおりで、特に開花期間中の温度は最低12℃を維持し、マルハナバナの活動に支障をきたさなかった。

マルハナバナの花序行動数は、養天日と養天日の天候に関わらず、たえず3～5程度であった（第2図）。

実験1、促成に有効な品種の選択

1. 小花数と小花形質

小花数/花序は6（'Berkley'）、'Darrow'で、品種により差が認められた。花冠直径（5～6mm）は品種間に差がなく、花冠長は'Patriot'の10mmが最大で、'Northland'の7mmが最小であった（第1表）。

第1表 ブルーベリーの促成栽培における各品種の小花数と小花形質

<table>
<thead>
<tr>
<th>品種</th>
<th>小花数/花序</th>
<th>小花形質</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds</td>
<td>7.5 a</td>
<td>4.9 a</td>
</tr>
<tr>
<td>Earlblue</td>
<td>8.0 a-c</td>
<td>5.1 a</td>
</tr>
<tr>
<td>Patriot</td>
<td>7.9 a-c</td>
<td>5.8 a</td>
</tr>
<tr>
<td>Northland</td>
<td>8.5 ab</td>
<td>5.6 a</td>
</tr>
<tr>
<td>Berkley</td>
<td>6.1 d</td>
<td>5.0 a</td>
</tr>
<tr>
<td>Darrow</td>
<td>8.8 a</td>
<td>5.0 a</td>
</tr>
</tbody>
</table>

*検定はTukeyの方法（5%水準）を用いて行った。
第2表 ブルペクレーの促進栽培における各種品種の収穫期及び収穫量

<table>
<thead>
<tr>
<th>品種</th>
<th>处理区</th>
<th>8月21日</th>
<th>9月7日</th>
<th>9月21日</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weymouth</td>
<td>促進効果あり</td>
<td>32g</td>
<td>32g</td>
<td>32g</td>
</tr>
<tr>
<td>Earlisn</td>
<td>促進効果なし</td>
<td>32g</td>
<td>32g</td>
<td>32g</td>
</tr>
<tr>
<td>Patriot</td>
<td>促進効果なし</td>
<td>32g</td>
<td>32g</td>
<td>32g</td>
</tr>
<tr>
<td>Northland</td>
<td>促進効果なし</td>
<td>32g</td>
<td>32g</td>
<td>32g</td>
</tr>
</tbody>
</table>

*加算室内にジグマラババナを施設した。
*処理は1日利の方法（5%水準）を用いて行った。
*除草剤不処理区を基準と比較した。
*実験条件なし

第3表 ブルペクレーの促進栽培における各種品種の黒粒形態

<table>
<thead>
<tr>
<th>品種</th>
<th>处理区</th>
<th>果粒重(g)</th>
<th>可溶性固形物含量 (%)</th>
<th>植葉数(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weymouth</td>
<td>促進効果あり</td>
<td>1.7</td>
<td>9.0 b</td>
<td>1.41 b-e</td>
</tr>
<tr>
<td>Earlisn</td>
<td>促進効果なし</td>
<td>1.6</td>
<td>10.3 a</td>
<td>1.06 a-b</td>
</tr>
<tr>
<td>Patriot</td>
<td>促進効果なし</td>
<td>1.4</td>
<td>11.0 a</td>
<td>1.00 a-b</td>
</tr>
<tr>
<td>Northland</td>
<td>促進効果なし</td>
<td>1.2</td>
<td>11.0 a</td>
<td>1.00 a-b</td>
</tr>
</tbody>
</table>

*加算室内にジグマラババナを施設した。
*検定はTukeyの方法（5%水準）を用いて行った。
*除草剤不処理区を基準と比較した。
*収穫条件なし

第4表 ブルペクレーの促進栽培における各種品種の小花数と小花数

<table>
<thead>
<tr>
<th>品種</th>
<th>小花数/花苞</th>
<th>小花数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northland</td>
<td>8.5 a</td>
<td>5.6 a</td>
</tr>
<tr>
<td>Tifblue</td>
<td>7.6 a</td>
<td>3.5 b</td>
</tr>
</tbody>
</table>

実験1. 促進栽培効果（ガラスパッチ処理）に及ぼす影響

1. 小花数と花冠長

以下に示す。、北側栽培において、果粒の大きさ及び果樹の貯水性が認められた。果樹に与える影響は、果樹の品種及び果樹の栽培法により大きく影響される。また、果樹の生長状態に影響を与えることを確認した。果樹の栽培法Наименованное название не соответствует языку, но можно предположить, что это может быть ошибка в ожидании языка, который указан в теге "primary_language". В любом случае, передаваемая информация может быть неправильной или непонятной, и требует дополнительного контекста. Если вы хотите уточнить или исправить текст, пожалуйста, предоставьте дополнительную информацию.
第5表 プルーブの収穫期における促成開始時期、マルバ
ナバチ放牧およびGA処理が開花及び収穫期に及ぼす影響

<table>
<thead>
<tr>
<th>品種</th>
<th>化成開始期</th>
<th>化成区</th>
<th>開花率</th>
<th>收穫期</th>
<th>收穫量</th>
<th>乾燥収穫量</th>
<th>乾燥収穫量比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>3/12</td>
<td>5/12</td>
<td>5/21</td>
<td>5/21</td>
<td>5/21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>5/20</td>
<td>5/20</td>
<td>5/30</td>
<td>5/30</td>
<td>5/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>6/24</td>
<td>6/24</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>6/24</td>
<td>6/24</td>
<td>7/4</td>
<td>7/4</td>
<td>7/4</td>
</tr>
<tr>
<td></td>
<td>3/9</td>
<td>放牧</td>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
<td>7/28</td>
</tr>
</tbody>
</table>

第6表 プルーブの収穫期における促成開始時期、マルバ
ナバチ放牧およびGA処理が収穫影響に及ぼす影響

<table>
<thead>
<tr>
<th>品種</th>
<th>化成開始期</th>
<th>化成区</th>
<th>平均値</th>
<th>乾燥収穫量</th>
<th>乾燥収穫量比</th>
<th>開花期</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northland</td>
<td>2/9</td>
<td>放牧</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>2/23</td>
<td>放牧</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>3/9</td>
<td>放牧</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Tifblue</td>
<td>2/9</td>
<td>放牧</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G A処理</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>無処理</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

注: ハヤブの方法（6%水準）を用い、3品種内で行った。
注: 異なる処理により開花期が変化した。

第4図 促成開始日と結語が最も低い結果が示す影響

第4図 促成開始日と結語が最も低い結果が示す影響

結論: 2月9日の促成開始期の促成区は6月16日で、廃
地区よりも約1ヶ月早かった。しかし、G A処理区は一定
の傾向が見られなかった。

なお、促成開始時期が同じ場合、開花期はほとんど見
られないものの、両品種ともにG A処理区の開花期は
促成区の開花期が最も遅くなる傾向が認められた
(第5表)。

3. GA処理とマルバナバチ放牧が結果を及ぼす影響

'Northland'の促成区の結果が(40-85%)は、促成開始
期に遅くないG A処理区(R-70%)よりも高く、促成
開始期が遅くなるほど高くなった。

一方、’Tifblue’の結果区の結果が(30-80%)は、
'Northland'のそれより低く、2月9日の促成開始で得
に低く、それ以下促成開始では40%前後であった。
G A処理区の結果が22-43%、’Northland’に比べて
高くなった。

なお、開花期の結果は'Northland'の91%、また’Tif
blue’は47%で、両品種ともにそれらの促成区でG A
処理区より高かった。しかし、両品種ともに無処理区
の結果は1-5%以下であった（第4図）。

4. G A処理とマルバナバチ放牧が収穫期間に及ぼす影響

開花期に関しては、両品種ともに促成区と開花期との
差はほとんど認められなかった。一方、G A処理区の良
好は、他の処理区や廃地区よりも高く、可能性を開花期
量は他の処理区や廃地区より高くなる傾向が見られた（第
6表）。
考 察

プルーベリーは輪状花であるため、果実の安定生産を図るには、放花放果の利用が重要である。そのため剝摘果実であっても、放花放果を積極的に利用すべきであることが言えている（小田ら、2000;前田ら、1990a, b）。実験でも10月以降の加温温水で実施した実験とし、剝摘果実がほとんど結果しなかったのに対し、実験1の放果区ではいずれの品種も40%以上の結果率を示し、また実験2においても2月9日に実施放果区の"Titblue"を除き、35%以上の結果率であった。この事実は、少なくとも2月下旬以降の加温温水放果において、マルハナバックはプルーベリーの花粉飛散を助けることにより有効であることを示すものである。なお、花粉飛散は花粉をミクロソリフィラの利用も考えられるが、同様はマルハナバックにより激发的であったり、取り扱いがやや難しいことになる。加温温水条件下では風を特にさほど強く増加することが見られなかったため、その活動は軽かかったと推定される。

一方、ラビットアイブルーベリー品種はハイブッシュブルーベリー品種に比較し、花期集中が小さく、また結果率が低い（前田、1990b）ことが知られている。本実験2の促成放果区"Titblue"の結果率が、いずれの促成時期においても"Northland"より低かったことは、小花の花粉飛散が極端に少ないことや、回帰放果を利用した品種の親和性に関する考察を示すものと考えられる。また、実験1の"Wyemouth"実験における2月9日と23日投 農放果区の"Northland"の結果率は、寒地品種のそれより低率であることが、2月9日投農放果区の"Titblue"のそれと極端に低率であることは、ハイバックの放果数の多いと考えた。寒地から寒地環境への適応力の低下は、小花が正常に発育しないことから、考えられる。

次に、実験1の促成放果の結果、供試した品種中、優先放果の"Wyemouth"から劣先放果の"Berkeley"までの5品種は、山形地方の栽培適地では不可能な4月放果が可能であり、また果実品質も果実質量に及ぼすことができ、これらの品種は促成栽培に有利であると考えられる。一方、実験2の"Northland"の2月9日放果区で、5月上旬から結果可能であり、結果率も40%を示したからである。山形地方におけるプランベリーの促成栽培研究において、バーファンブルーベリーからハイブッシュブルーベリーへは品種を利用することにより、2月上旬から促成栽培が可能であると考えられる。青木・種苗（1996）は、促成栽培における"Northland"の休眠期を4℃で6、7週間（1008～1176時間）の低温期間が必要であることを示し、また小田・種苗（1994）は、ハイブッシュブルーベリーの正常な花粉受粉のためには、7℃以下で少なくとも60時間以上が必要であることを示している。山形地方において、2月上旬までの7℃以下の積算時間が観象時間が1000～1300時間であることを考慮すると、このような低温度によって自発休眠がほぼ完了するものと思われる。

Barker・Collins（1965）は、GA処理がローブッシュブルーベリーの果実形成を誘導すること、またNishimuraら（1995）は果実を起こしたラビットアイブルーベリーの花束にかわら、GA処理は有効であることを報告し、さらに福島・大根（1996）は、自家受粉および自然受粉のいずれにおいても、GA処理はラビットアイブルーベリーの結果率を向上させることを示した。実験2の結果は、加温温水での促成条件のもとでGA処理がラビットアイブルーベリー"Titblue"の結果率を向上させることを示したが、バーファンブルーベリーの"Northland"ではその効果が弱く、処理時期や濃度の再検討が必要である。いずれにしてしても、食前ではより大粒の果実が好まれることから、寒地放果区に比べ果実の肥大が劣る、収穫時期も延長させる可能性があるGA処理は、促成栽培に利用できるということを示される。なお、ラビットアイブルーベリー"Titblue"に関しては、収穫期が最も早いか2月9日放果区であっても、収穫開始が6月中旬であり、ノーサンハイブッシュブルーベリー、バーファンブルーベリーと比較して、収穫時期が遅いことから、促成栽培の優位性は低いものと思われる。

以上の結果から、2月から3月の促成栽培では、ノーサンハイブッシュブルーベリーおよびバーファンブルーベリーの極早生から中生品種まで利用できると考えられる。またその際、マルハナバックは花粉媒介昆虫として有効であることが示唆された。

摘 要

促成栽培におけるマルハナバックの有効性や促 成開始時期と収穫時期との関連を調査し、早期栽培に有効な品種の選択を試み、促成栽培により開花期や収穫期が短く、またマルハナバック放果により、結果率が高くなった。ただし、品種や促成開始期の違いにより、結果率に差が認められた。GA処理は、"Northland"より"Titblue"において結果率の向上に効果が認められた。しかし、GA処理区はマルハナバック放果区に比較し、結果率が低く、果実も劣った。3月下旬からの現地栽培に対して、ノーサンハイブッシュブルーベリーおよびバーファンブルーベリーの極早生から中生品種は、5月に収穫可能であり、促成栽培に利用できると考えられる。なおその場合、ノーサンバックは花粉媒介昆虫として有効であることが示唆された。

引用文献
野口喜明・熊村尚文（1996）: 冷藏期栽培 期間および品種の違いがプルーベリー果実品質の開花に及ぼす影響、農業生産技術管理学会誌、30(1): 7-12.

