Adventitious Shoot Formation, Somatic Embryogenesis and Plantlet Regeneration from
In Vitro - Cultured Root Tissue of Angelica keiskei (Miq.) Koidz.

Hiroshi Furuya¹,³ and Takashi Hosoki²*³

¹Hiroshima Prefectural Agriculture Research Center, 6869 Hachihionmatsu-cho, Higashihiroshima Hiroshima 739-0151
²Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504
³United Graduate School of Agricultural Sciences, Tottori University, Koyama, Tottori 680-0945

Summary

An efficient mass propagation system using the petiole and root culture were established in Angelica keiskei (Miq.) Koidz. In petiole culture, the basal portion was cultured on MS medium supplemented with 1−2 mg/l 2,4-dichlorophenoxyacetic acid(2, 4−D)and 0, 0.01 and 0.1 mg/l N6−benzyladenine (BA) at 25°C in the light. Callus formation was observed on all media tested and these calli were transferred on MS hormone−free medium. Adventitious buds were induced and developed into normal plantlets. In petiole culture, the number of regenerated plants per petiole section ranged from four to ten.

In root culture, root sections from aseptically generated plants, were used as explants and cultured on MS medium supplemented with 0, 0.05, 0.1, 0.5, 1.0 and 2.0 mg/l 2, 4−D at 25°C in the dark. Embryogenic calli were induced on medium supplemented with more than 0.05 mg/l 2, 4−D. Furthermore, many embryos were observed on the calli which were formed on medium supplemented with more than 0.5mg/l 2, 4−D, irrespective of BA addition. These embryogenic calli and embryos were transferred onto MS hormone−free medium at 25°C in 16 h light. Many embryos and adventitious shoots formed vigorously, then developed into normal plants by subculture on the same medium. After acclimatization, regenerated plants were transplanted to soil and nearly all plants rooted and developed to young plants 45 days later.

キーワード：アシタバ、不定芽、不定胚、根、組織培養

緒 言

近年、高齢化社会が進むとともに人々の健康への関心が高まり、植物の持つ機能性成分が注目され、山菜や薬用植物が見直されてきている。その中的一つに、食物繊維やビタミン、ミネラルを豊かに含むアシタバ(Angelica keiskei (Miq.) Koidz.)がある (小沢ら, 1978; Iguchiら, 1992)。アシタバは、セリ科に属する多年生草本植物で、太平洋沿岸の温暖地に自生する繁殖力旺盛な植物である。伊豆諸島の八丈島では特産野菜として古くから栽培されている (河野, 2002)が、他県性が強いため優良種子の採種が困難であり、発芽に長期間を要するとともに種子の貯蔵性が悪いなどの問題がある (小寺, 1991)。今後、振興作物として自生地以外で導入する場合や、機能性成分を高含有する効果ある種苗の育成に役立たすためには効率的な組織培養系の確立が必要である。

本報告ではin vitroにおいて安定したアシタバの大量増殖系を確立するために、葉柄組織切片中の植物体再生と再生植株の根組織切片からの不定胚誘導および植物体再生について検討した。

材料および方法

実験1. 葉柄切片からのカルス、不定芽形成および植物体再生

供試材料の葉柄は2002年7月1日に鉄栽培しているアシタバの手摘出の基部3-5 cmを採取し、氷水で洗い70%エタノールで数秒浸漬後、次亜塩素酸ナトリウム溶液（有効塩素0.5%，Tween20添加）に15分間浸漬して滅菌した。クリーンベンチ内で滅菌液内に3回洗浄し、後、厚さ1-2 mmの横断切片を作成し、これを外植体として培養容器内に水封に置床し、外植体は培養容器（高さ100 mm ×径 25 mm試験管、培地量10 ml）当たり1個とし、1試験区当たり25個を供試した。

培地はMurashige・Skogor培地（1962；以下MS培地）に3%シロ糖および0.8%栄養成分を基本とし、植物生長調節物質として2, 4-ジクロロフェニル酢酸（2, 4-D）とベンジルアデニン（BA）を添加後、pH5.7に調整したものを使った。試験区は、1および2 mg/l、0.1および0.01 mg/l BAを組み合わせて6区を設けた。滅菌は容器当たり10 mlを注入した後にオートクレープ（1.2 kg/cm²，121℃，15分間）で行った。培養は25℃，3,000 lux（白色蛍光灯）、16時間日長で行った。外植体置床30日にカルスの形成状況を調査し、その形成率（%）は、（カルスを形成した外植体数/供試外植体数）×100で算出した。

次に、形成したカルスは植物生長調節物質を添加しないMS培地に移植し、60日間蒸発を続けた後に、カルスから形成した不定芽を調査し、その形成率（%）は、（不定芽を形成した外植体数/供試外植体数）×100で算出した。また、発根数が認められ、葉柄が1 cm以上伸長し、順化可能な大きさに生育した個体を再生植物体として調査した。

実験2. 培養体由来根組織切片からの不定胚形成および植物体再生

1. 2, 4-D添加濃度の影響

実験1で得られたin vitro再生植物体の根組織を材料とし、クリーンベンチ内で長さ約1.5 cmの細根切片を作成し、これを外植体として下記の培地に置床した。基本培地には、3%シロ糖および0.8%栄養成分を添加したMS培地を用いた。試験区は、0, 0.05, 0.1, 0.5, 1, 2 mg/l, 4, 4-D添加の6区を設けて2反復で行った。外植体は、培養容器（高さ100 mm ×径 25 mm試験管、培地量10 ml）当たり3個、試験区当たり計30個を供試し、30日間培養した。その後、同一容器の2, 4-Dを添加しないMS培地に移植して維持培養した。30日間培養後、培殖した容器1個（外植体3個）の培養体は、ポリカーボネイト製養育容器（高さ100 mm ×径 80 mm、培地量40 ml）に再度移植し、実験1と同様に再生植物体が順化可能な大きさになるまで45日間培養を続けた。

外植体置床30日後の培養条件を25℃、暗黙条件とし、2, 4-Dを添加しないMS培地へ移植後のそれは25℃，3,000 lux（白色蛍光灯）、16時間日長とした。外植体置床30日にカルスの形成状況を調査し、大きさを外植体全体に形成（+++）、外植体の半分に形成（++)、外植体の一部に形成（+）およびカルス形成なし（-）の4段階に分け、大小別の形成割合（%）を、（カルスを形成した外植体数/供試外植体数）×100で算出した。また、2, 4-Dを添加しないMS培地上にカルスを移植し、誘導した不定芽の形成率は、西村ら（1990）の報告に従って、胚軸と幼根を基準とし、根組織やカルスと区別できるものを不定胚として判断し、全外植体に対する不定胚を形成した外植体数の割合で示した。

2. 2, 4-DとBAの併用添加の影響

MS培地を用い、実験2-1と同様の供試材料および培養方法で検討した。試験区は、0および2 mg/l、4, 4-Dと0.01および0.1 mg/l BAを組み合わせて6区を設け、実験2-1と同様の規模で3反復行った。外植体置床30日に形成したカルスを、2, 4-DとBAを添加しないMS培地上に移植して30日間維持培養後に、実験2-1と同様に不定胚形成率を調査した。その後、不定胚から生育した植物体は、ポリカーボネイト製養育容器（高さ98 mm ×径 75 mm ×径 75 mm、培地量40 ml）に移植して更に45日間培養を続けた後、外植体当りの順化可能な大きさとなった再生小植物体数とその発根率、葉数および最大葉柄長を調査した。

なお、得られた再生植物は、バーチミュライトを詰めたセル成型トレイ（96穴）に仮植えし、透明プラリ密閉容器（縦740 mm ×横400 mm ×高さ325 mm）内で順化した。その後、花壇岩風化土壌とペック堆肥を混合した用土を用いてポット植えし、無加温のガラス室内で管理した。

結果および考察

実験1. 葉柄切片からのカルス、不定芽形成および植物体再生

葉柄切片からのカルス形成率は、1および2 mg/lの2, 4-Dの単独添加した区でそれぞれ100%および84%と高かった。2, 4-DとBAを併用した場合は2 mg/l 2, 4-Dと0.01 mg/l BAを添加した区ではその形成率が100%であったが、他区では60-84%と2, 4-D単独添加
区よりも低かかった（第1表）。カルスは、外植体の切断面に形成され、黄色を帯び生育するに至って盛り上がってきた外植体全体を覆うように形成された。

その後、カルスを2、4-DとBAを添加しないMS培地に移植し、随代培養を行ったところ不定芽を形成した（第1図）。不定芽形成率は、カルス形成率と同様の傾向を示し、1mg/l2、4-Dのみ添加した区と、2mg/l2、4-Dと0.01mg/lBAを添加した区が80～84%と高く、他区は40～72%であった。不定芽は、随代培養を続けると葉柄が伸長し、発根した完全な再生植物（第2図）となり、外植体当たりの再生植物体数は、2mg/l2、4-Dと0.01mg/lBAを添加した区が9.9本と多かった。他区のそれは、6～8本の範囲内であった（第1表）。

一般に、外植体からのカルスならびに器官形成は、オーキシンとサイトカイノニンの相互作用にによる変化することが知られている（Murashige・Skog, 1962; Linsmaier・Skog, 1965）。本実験では、オーキシンの2、4-D単独添加でもカルス形成率および不定芽形成率が高かった。すなわち、葉柄切片からのカルス形成は、1～2mg/l2、4-D添加培地で高率に認められ、このカルスを2、4-DとBAを添加しないMS培地に移植し、随代培養を行えば不定芽の形成が認められた。一方、サイトカイノニンであるBAとの併用添加については、2、4-Dを2mg/l添加の時にはBAを加えても不定芽形成率に差はみられなかった。1mg/l添加ではBAを加えることによりカルス形成率および不定芽形成率が低下した。このことから、アシタバの葉柄切片からの植物体再生には、2、4-Dの効果が大きく、BAの影響は小さいことが示され、同様な結果はニンジン（入谷ら, 1980）でも報告されている。

実験2. 培養体由来根組織切片からの不定胚形成および植物体再生
1. 2、4-D添加濃度の影響
2、4-D添加濃度が、アシタバ根組織切片からのカルス形成、カルスを形成した外植体を2、4-Dフリーペットで随代培養した時の不定胚形成に及ぼす影響について検討した。試験した2、4-D添加濃度の範囲内では、0.05mg/l以上添加区でカルス形成が認められたが、カルスの形成程度を評価する0.1mg/l以下の試験区でのカルス量は比較的少なかった（第2表）。0.5～2mg/l添加区でのカルス形成率は96.7～100%とそれぞれを高かったが、0.5mg/l区でカルス形成量の多い外植体数が最も多かった。カルスの色は全ての試験区とも黄褐色で、形状は表面に凹凸がなくセリ状で柔らかかった。2、4-Dを添加しないMS培地に移植し、随代培養したカルスから不定芽の形成（データ略）とともに、不定胚の形成が認められた。不定胚の形成は、初代培養において2、4-Dを0.5mg/l以上添加した区で認められ、その形成率は1mg/l区および2mg/l区で80%以上と高かった。なお、2、4-D無添加区においては外植体の18%に不定胚がカルスを経由せずに直接形成された（第2表）。

中村ら（1991）は、アシタバ無菌植物の葉柄切片から2、4-D0.5～1mg/l添加培地で不定胚の形成を認めていたが、本実験から根組織切片でも不定胚形成が観察されなかった。なお、古川ら（1989）は、植物生長調節物質を用いないでニンジンの幼根先端部の体細胞から不定胚を誘導している。本実験でも2、4-D無添加区で不定胚形成が認められたことから、アシタバの培養体根組織は不定胚形成能が高い細胞であると考えられる。

実験2-1で、2、4-D1および2mg/l単独添加培地で
形成したカルスを、4-D フリー培地に移植して越代培養すれば不定胚が高率に形成することができた。そこで、カルス形成時のオキシシンとサイトカイニンの添加が、フリープラシゲムのカルスからの植株再生に及ぼす影響を検討するため、2、4-D と BA の併用添加効果について実験を行った（第 3 表）。その結果、1 毎 2 mg/l の 2、4-D と 0、0.01 および 0.1 mg/l の BA を組み合わせて添加した試験区のカルス形成率は、いずれも 100％であった。形成されたカルスは、2、4-D と BA で比較して培養して越代培養を行うと、いずれの試験区とも全てのカルスから不定胚が形成し、発育して幼植株体となった（第 3 図）。

越代培養により生育した幼植株体は、2、4-D と BA を添加しない MS 培地に入れられたポリカーボネイト製培養容器に再度移植して培養を続けた結果、カルス移植 75 日後（幼植株体基床から 105 日後）には、順に可能な大きさとなった再生植株が外植体当たり 11~15 本を得られた（第 3 表）。試験区間では、2 mg/l 2、4-D のみ添加区と 2 mg/l 2、4-D および 0.01 mg/l BA を併用して添加した区の外植体当たりの再生植株数は 14.1~14.7 倍に他区に比べて多く、有意差が認められた。

In vitro の再生植株を用いて大量培養を図るには、越代培養に用いる外植体の検討が必要である。本試験では、多量の外植体が試験群で観察され、しかも生長の強さを有する根組織を有する活発的な根組織を用いて試験した。根組織切片を外植体に用いた報告例は、ニンジン（入谷ら、1980）、シオデ（吉野ら、1991）、ユーストマ（Fukaiら、1991）、ホウレンソウ（Komaiら、1996）、ハマボウフウ（平井ら、1995）などがある。この場合の植物生長調節物質の種類としては、α-ナフタレン酢酸（NAA）のみ、または 2、4-D と BA を併用添加した培地で、外植体から直接不定芽の形成やカルス経由のシュート形成、あるいは不定胚誘導が報告されている。

ミシナ・における根組織切片から発生した植株再生、本実験において初めて見いだされたものであり、中村ら（1991）、遠藤ら（1994）の葉柄培養の結果に比べて不定胚誘導率は著しく高く効率的な培養方法である。すなわち、根組織培養は、無代培養で本培養の葉柄培養を行うか、または、一般的な茎頂培養により再生植物を得ることが必要であるが、in vitro 植物体が得られれば、外植株として用いる根組織切片は、無代培養で培養できるので、あらゆる植物から再生植物を得ることができる。このようにして、in vitro 植物体から根組織切片を得たと仮定して、2.5 か月という短期間で 1,100~1,500 個体の培養苗が増殖可能である。

なお、バーミキュライトを含んだセル型成土材を用いた植株培養、密閉容器内で生長した再生植物（480 個体）の生存率は 97％と非常に高かった。また、ポットに植え付け後

表 2	2, 4-D 添加濃度がアシナ・の根組織切片からカルス形成とカルス形成した外植株を、2, 4-D フリー培地で越代培養したときの不定胚率に及ぼす影響					
2, 4-D (ng/l)	カルス形成率 (％)	カルスの大きさ別形成割合 (%)	不定胚形成率 (％)			
		++*	+	+	-	
0	0	0	0	0	100.0	18.0
0.05	76.7	0	0	76.7	23.3	0
0.1	86.7	1.7	11.7	73.3	13.3	0
0.5	100.0	51.7	20.0	28.3	0	45.0
1	96.7	28.3	41.7	26.7	3.3	81.7
2	100.0	23.3	45.0	31.7	0	83.3

*外植体基床 30 日後に調査、数字は 2 発生率の平均値（n=30）

表 3	2, 4-D と BA の添加濃度がアシナ・の根組織切片からカルス形成した外植株をフリープラシゲム培養したときの不定胚形成率および再生植株体の生育に及ぼす影響					
2, 4-D (ng/l)	BA (ng/l)	不定胚形成率 (％)	再生植株体数 (本/外植体)	発根率 (％)	葉数 (枚)	最大葉柄長 (cm)
0	0	100	11.5 ± 0.75*	100	3.8 ± 0.1	1.8 ± 0.1
1	0.01	100	11.4 ± 0.7b	100	4.0 ± 0.1	2.2 ± 0.1
0.1	0	100	12.7 ± 0.7	100	4.0 ± 0.1	1.9 ± 0.1
0.5	0	100	14.1 ± 0.9a	100	4.0 ± 0.2	2.1 ± 0.1
1	0.01	100	14.7 ± 1.2a	100	3.5 ± 0.1	1.7 ± 0.1
1	0.1	100	11.3 ± 1.0b	100	4.8 ± 0.2	2.0 ± 0.1

* 2, 4-D フリー培地に移植、30 日間培養後に調査

* 2, 4-D フリー培地に移植、75 日間培養後に調査

* 葉数が 1cm 以上成長、順化可能な大きさとなった個体数。"LSDテスト 5％レベルで有意

* 偶は平均値±SE (n=30)

* 異なるアルファベット間には 5％水準で有意差あり（Tukey-Kramer test）
第1図 葉柄切片からカルスを経由して形成した不定芽

第2図 葉柄切片から不定芽を経由して再生した植物体
の活性率も95％と高く、45日後には新しい葉が現れるほど生長が旺盛であったことから、本手法はアシタバ種苗の急速大量増殖法として有効であると考えられる。

第3図 2、4-D添加培地で根切片から形成したカルスを2、4-
Dフリー培地に移植して誘導した不定胚から発育した幼
植物（左下：発育初期）

第4図 根切片から不定胚を経由して再生した植物体
を行えば幼植物に生育した。なお、順化後、ポット植
えした再生植物は、45日後には新葉が現れ生長は旺盛で
あった。

このことから、アシタバの組織培養による増殖は、葉
柄培養による不定芽形態よりもin vitro培養体の根組織切
片培養による不定胚誘導の方が増殖効率が良いことが明
らかとなった。

引用文献
遠藤柳子・亀谷寿昭・庄子孝一．1987．セリのカルスからの
不定胚形成．第10回植物組織培養シンポジウム講演要
旨集：162。
遠藤柳子・庄子孝一．1994．セリ、セルリー及びアシタバの
体細胞不定胚形成．宮城農業報．60：65－75。
Multiple shoot regeneration from root cultures of praire
Kagawa Univ., 43 (1) : 31－34.
古川一・松原千尋・重松典宏．1989．植物生長調節物質を
用いないニンジンの不定胚形成．植物組織培養．6：92－
94。
古谷雄．1992．マーガレットの蕾・花梗培養，図解花のパ
イオ技術．P58－59．新美芳二編著．誠文堂新光社．東
京。
浜田守彦・細木高志・草間康弘. 1990. 節培養によるサクラの大量増殖. 植物組織培養. 7: 35-37.
西村繁男・斎藤輝夫・山口真美子. 1990. 不定胚形成の現状と誘導技術. 第910号アルコール5 不定胚誘導と大量増殖. 誠文堂新光社. 東京.
渡辺 仁・大越 隆・佐藤光子・武田敏昭. 1990. 節用植物によるシオデ (Smilax olidhami Miq.) の幼植物育成. 福島農試研報. 29: 73-78.