台木の違いがプドウサンショウの枯死率と生長に及ぼす影響

前田隆昭1*・米本仁巳2**・萩原 進3

1和歌山県有田振興局有田地域農業改良普及センター 643-0004 和歌山県有田郡湯浅町
2独立行政法人国際農林水産業研究センター 沖縄支所 907-0002 沖縄県石垣市真栄里川原辻
3和歌山県農林水産総合技術センター 林業試験場 649-2103 和歌山県西牟婁郡上富田町

Effects of Rootstock on Tree Mortality Rate and Growth in Young Japanese Pepper (Zanthoxylum piperitum (L.) DC.)

Takaaki Maeda1, Yoshimi Yonemoto2* and Susumu Hagiwara3

1Agricultural Extension Office for Aida District, Yuasa, Arida, Wakayama 643-0004
2Japan International Research Center for Agricultural Sciences, Okinawa Branch, Maezato, Kawanabaru, Ishigaki, Okinawa 907-0002
3Wakayama Prefecture Experiment Station for Forestry, Kamitonda, Nishimuro, Wakayama 649-2103

Summary

Effects of rootstocks on tree mortality rate and canopy volume expansion in young Zanthoxylum piperitum (L.) DC. f. inermis Makino (Budousanshou) Japanese pepper tree were compared among Z. schinolobium Sieb. et Zucc. (Inuzaishou), Z. alatum Roxb. var. planispinum Rehd. et Wils. (Fuyuzanshou) and Fagara ailanthoides Engl. (Karazausanshou) rootstocks for high viability after grafting and an early canopy establishment.

The tree mortality rate was significantly higher on the Inuzaishou rootstock than on the Fuyuzanshou rootstock. All trees on the Inuzaishou rootstock died within 3 years after planting. The volume of tree canopy 5 years after planting was significantly larger on the Karazausanshou rootstock than on the Fuyuzanshou rootstock. The canopy volume on the Karazausanshou rootstock was twice as large as that of the Fuyuzanshou rootstock. Overgrowth of rootstock was observed on the Karazausanshou rootstock during the 5-year experiment, but there was no imbalance in the growth rate between rootstock and scion diameter. Numbers of flower clusters produced on 5-year old trees were significantly larger on the Fuyuzanshou than on the Karazausanshou rootstock.

キーワード：プドウサンショウ, 台木, フユサンショウ, イヌザンショウ, 樹冠拡大, カラササンショウ

緒 言

和歌山県では古くから実ササンショウの栽培が行われ、その生産は日本一である（農林水産省果樹花卉課、2003）。
栽培品種は同県清水町で選抜されたプドウサンショウ (Zanthoxylum piperitum (Linn.) DC. f. inermis Makino) で、台木は山野に自生しているイヌザンショウ (Z. schinolobium Sieb. et Zucc.) の実生を用いている。しかし、イヌザンショウ台は接木後の初期生育が悪く、しかも定植後数年で枯死する樹が多く、栽培上の大きな問題となっており、その対策として、近年、樹勢の強いフユサンショウ (Z. alatum Roxb. var. planispinum Rehd. et Wils.) の実生を台木に用いる生産者が増えていく。一方、本県沿岸部に多く自生しているカラササンショウ (Fagara ailanthoides Engl.) も樹勢でプドウサンショウと接木親和性のあることが知られている（米本・萩原, 2000）。樹勢が台木を利用することで若齢樹の生存率が向上し、しかも樹冠拡大が促進され早期成樹化を図ることができれば、農家収入の増加につながる。しかし、これらを台木とした場合のプドウサンショウの若齢樹生存率の向上効果あるいは樹の生育および早期着花性に及ぼす影響については明らかでない。そこで、本研究ではプドウサンショウの生存率向上に最適な台木を選択する目的でイヌザンショウ、フユサンショウおよびカラササンショウを用い、定植後の枯死率を比較した。さらに、樹勢のフユサンショウ台とカラササンショウ台で定植後の樹体生育速度と1樹当たり花数を調査し、どちらの台木が初期の樹冠拡大および早期着花に有効であるかを検

2004年11月2日 受付、2005年1月28日 受理。
**Corresponding author. E-mail: yonemot@sficr.ac.jp
*現在：和歌山県農林水産総合技術センター 林業試験場

203
材料および方法

本実験は和歌山県東牟婁郡古座川町にある県ふるさと定住センターの平野圃場（樹上）で、樹高2m、中央部の樹高50 cmの樹を栽培法を用いて行った。幅3 m、深さ2.5 mの排水路が棚池に隣接しており、雨水は棚間から直接この排水路に排水した。樹高は定植2か月前に行い、この時に10 a当たり換算でバターバレル6 t、苦土石灰60 kg、BMヨーリン40 kgを施し土壤と良く混和した。

試験1．台木による幼木の枯死率

イヌザンショウ、フユザンショウおよびカラザンショウの2年生実生樹を台木とし、これに清水町の経済栽培圃場で栽培したブドウザンショウの前年枝を種木として3月に切り接ぎした。接ぎ木時の台木直接、種木直接はそれぞれ1.0 cm、0.7 cmであった。接ぎ木1年後を経過したブドウザンショウ苗をそれぞれ20株ずつ、1998年2月に樹の中央部に樹間2 mで定植した。定植後の年間の施肥量は果実成分で5.5 kg/10 aとし、全量を2月上旬に施した。かん水サプレートを樹の中央部に設けてかん水を適宜行った。土壌全面にバター堆肥を約5 cmの厚さに敷き、さらにその上に約3 cmの厚さに敷きわらをした。定植後の枝・幹の健在性に基づく枯死率の検査を定植後4年間調査した。1998年に、定植後から開場の気温（高さ1.5 m）と地表下15 cmの地温（樹の中央部で樹間の中央部）を記録装置にフィードバックを取る（独立栽培）で毎時測定し、7月と8月の日最高、最低および平均値を計算した。

試験2．台木による生育状況および花房生数の比較

2年生フユザンショウおよびカラザンショウ実生樹に切り接ぎした1年を経過したブドウザンショウ苗をそれぞれ30樹ずつ1999年2月に試験1と同様に定植し、その後の管理も同様とした。接ぎ木の枝の状態は台木周（接木部の5 cm下部）、幹周（接木部の5 cm上部）を定植後毎年12月に測定し、Webber（1948）の方法で幹周/台木周から台幹径を台木間で比較した。樹木の生育は定植5年後の大2月に各台木で生育の約20株選び、樹高、樹幹径（7接ぎ法：農水省果樹試験支所、1987）を比較調査し、枝葉長は同年に台枝の先端部を台木から5本ずつ合計100本選んで測定した。翌年4月に1樹当たり花房数を20株で調査した。

結果および考察

試験1．台木による幼木の枯死率

台木によるブドウザンショウ幼木の枯死率に明らかに差が見られた（第1図）。イヌザンショウの樹高は定植3年後までに全て枯死したが、カラザンショウおよびフユザンショウ台の枯死率は定植2年後でも枯死が見られなかった。カラザンショウ台の枯死が見られない理由は、カラザンショウの定植後1年で枯死することが多く、これに伴う環境変化によるストレスに弱かったため（内藤，2004）と考えられる。ブドウザンショウと同様に果実を収穫するカラザンショウ（Z. piperitum DC. var. inerme Makino）やヤマザンショウ（Z. piperitum）に比べて樹勢の強いイヌザンショウを用いることで枯死が軽減した（松浦，2003）と報告されており、本実験結果とも一致する。しかしながら、ダニノシ・松浦（2003）はカラザンショウの枯死の原因を高地下水位による逆害であることを示唆している。しかしながら、本実験では樹立栽培法を用い過湿条件は与えなかったにもかかわらず、カラザンショウ台では全ての樹が枯死した。イヌザンショウ台でも環境条件が良い所では20年以上も果実生産を続けている例が見られるが、接ぎ木不適性性があることも考えにくい。さらに、気温および地温が最も高くなる夏期（7月、8月）の気温と地表下15 cmの地温はそれぞれ23～33℃、26～30℃の範囲内であり（第2図）、果樹の生育に影響を与えないことが示唆される。
に障害を与えると考えられるような高温には遭遇していなかった。これらのことから、本実験ではイネザシショウ台木での枯死の原因を明らかにすることは出来なかったが、今後、土壌病害虫の影響についても検討する必要がある。

イネザシショウは根が強く、乾燥にもよく耐えるので種子が苗の台木となる（内藤，1986）とされるが、同台木を用いた苗の枯死が散発で多発していることおよび本実験結果から、枯死を軽減にはカラザシショウとフユザシショウ台が適していると考えられる。

試験2．台木による生育状況および花房着生数の比較

台木の違いによる初期生育速度への影響が見られた（第1表）。定植5年後の生育状況は新梢長、樹高、新梢葉数を、カラザシショウ、フユザシショウのそれぞれに対比して比較した。

<table>
<thead>
<tr>
<th>台木</th>
<th>新梢長 (cm)</th>
<th>樹高 (cm)</th>
<th>樹容積 (m³)</th>
<th>花房着生数 (個)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カラザシショウ</td>
<td>24</td>
<td>225</td>
<td>9.6</td>
<td>68</td>
</tr>
<tr>
<td>フユザシショウ</td>
<td>10</td>
<td>332</td>
<td>5.3</td>
<td>1255</td>
</tr>
</tbody>
</table>

有意性 *：** NS ** NS

* t検定により，** 1%水準で有意，NS: 有意差なし

第3図 台木の違いが定植5年後のフユザシショウの定植の影響は、幹径および枝の台木間で及ぼす影響

図中の縦棒は標準誤差 (n=20)

第4図 接ぎ木1年後および6年後の接ぎ木部形状

A: 1年後のカラザシショウ台，B: 1年後のフユザシショウ台，C: 6年後のカラザシショウ台，D: 6年後のフユザシショウ台。

台木：フユザシショウ
カラスモンショウで花房数が著しく少なかった。リンゴ（Fisher, 1971）やモモ（水谷ら, 1985）ではわい性台木に接近すると結果年齢に達するまでの期間が短くなる早成性（prefixacy）が認められている。サンショウでも強樹勢のカラスモンショウを台木にすると結果年齢に達するまでの期間が短くなることも考えられるが、本実験でカラスモンショウ台木中1樹当たりの花房数が著しく少ないことから、今後、花芽分化の時期の定着とともに花芽分化に影響する要因を究明する必要がある。

以上の結果から、ブドウサンショウの枯死率軽減にはカラスモンショウまたはフユサンショウ台木を用いることが効果が高い。早期の樹冠拡大にはフユサンショウに比べカラスモンショウ台木が有利であるが、結果年齢に達するまでの期間を短くするにはフユサンショウ台木が有利であることが判明した。

要約

ブドウサンショウの接ぎ木後の生存率向上と早期樹冠拡大を目的にイネサンショウ、フユサンショウおよびカラスモンショウ台木による枯死率と樹の発育を比較検討した。

枯死率はフユサンショウおよびカラスモンショウ台木に比べイネサンショウ台木で明らかに高く、イネサンショウ台木では定植後3年までに全て枯死した。

定植5年後の樹冠はカラスモンショウ台木がフユサンショウ台木の約2倍であった。カラスモンショウ台木で著しく台幹が発達したが、フユサンショウ台木では樹冠と台木間に広範かつバランスはなかった。1樹当たり花房数はカラスモンショウ台木に比べフユサンショウ台木で著しく多かった。

引用文献

水谷房雄・山田昌雄・石川敏夫・市川正夫・木村正晴. 1985. ニワモモ及びウスラノモモ台木の枝枒者の樹勢に及ぼす影響. 国学雑. 54: 327-335.

野田勝二・奥田直・木村武士・岩垣光司. 2001. 種類別台木がウスラノモモの栽培技術 "山川早生"の生育および果実品質に及ぼす影響. 国学雑. 70: 78-82.

野田勝二・奥田直. 2003. 特産果樹栽培動態調査. 国学雑. 54: 56-60.

李相根・久保田尚浩・安井公一. 1993. ブドウ "藤絹 "の新梢ならびに果実の生長に及ぼす各種台木の影響. 国学雑. 61: 513-520.

高原利雄・緒方恵志・村田光子・岩垣光司・村松昇・小野裕幸・吉永勝一・廣瀬和美・山田勝雄・髙谷隆二・内田誠. 1994. 大谷イシカンの生育及び果実品質に及ぼす各種台木の影響. 果樹試報. 26: 39-60.

