Development of an Off-board Car Navigation System

Kimiyo Machii*, Non-member, Yoshinori Endo***, Non-member, Shigeru Matsuo*, Non-member, Katsuaki Tanaka*, Non-member, Michio Morioka**, Non-member, Kozo Nakamura**, Non-member, Kimiya Yamaishi*, Member, Toru Nakamura***, Non-member

This paper describes our off-board car navigation system. Our off-board car navigation system has (1) a center to provide navigation functions using the latest maps and POI (Point Of Interests) through the internet; and (2) a more compactly sized client terminal compared to conventional on-board systems. We evaluated the system. The concept of the system was evaluated as acceptable, but some problems that need solutions were identified.

キーワード: テレマティクス, カーナビ, 通信, オフボード

Keywords: telematics, car navigation, communication, off-board

1. 背景と目的

カーナビユーザの数は年々増えており, 国内においては, 1999年を境に年間出荷台数が150万台を超え, 2002年には年間出荷台数が200万台を超えた。欧州, 北米においても同様の傾向が見られ, 2005年には, 従来製品であるストレージを持つスタンドアロン型のシステムでは, 年間200万台を突破すると予想されている9)。

従来のスタンドアロン型のカーナビゲーションシステムにおいては, 多くの地図, 地点情報（POI: Point Of Interests）を格納するためにCD（Compact Disk）やDVD（Digital Versatile Disk）等の大容量記憶メディアが必要である。これらのメディアを用いる場合, 道路の新設, 変更などがあっても, 地図を変換する手間, 地形情報の更新は不可能である。したがって, 時間が経つにつれて, CDやDVDの情報は満載化していく。POI情報についても同様である。

CDやDVDを買い替えれば最新の情報を入手することは可能であるが, 地図の購入費用に対する割高感から, 買い替えをためらうユーザも存在する。カーナビ本体に対する割高感も存在すると考えられる。

ところで, 近年のインターネットの発展に伴って, 多くのネットワークサービスが提供されている。最近ではパソコンに限らず, 携帯電話での低コスト端末でも, インターネットのサービスを享受できるようになった。また, インターネット上には, ほとんど無限と言っても過言の情報量があり, それらの情報はいつでも更新が可能である。

我々は, このようなインターネットの特性が異常の問題を解決する手段になると考えた。ネットワーク上のサーバーに最新情報・POI情報を格納しておき, 必要に応じてダウンロードすれば, 常に最新情報を得ることが可能であり, CDやDVDの買い替えを不要になる。大容量ディスクが不要になるので, 車載端末はコンパクトかつ低コストになる。

そこで, 本論文では下記を目的としたオフボードナビゲーションシステムの開発について述べる。

（1）ネットワーク技術を用いることによって, 必要最小限の端末構成にし, 低価格なシステムを提供する
（2）ネットワーク技術を用いることによって、最新の情報を見事に手にできるシステムを提供する
（3）上記の構成によるシステムの実用性を検証する

2．システムコンセプト

(2-1) 特徴技術 図1は、本論文で述べるオプションナビゲーションシステムのコンセプトである。サーバには、地図データベース、POIデータベース、経路探索エンジンがある。車載端末は、インターネットを通じてサーバの機能を用いることによって、サーバの機能をユーザに提供する。本システムで提供する機能は、次に説明する。

(1) 地図情報配信 サーバは、最新の地図データベースを保持する。車載端末は地図に表示される地点を送信し、サーバはその地点を含む地図マッピングを切り出して車載端末に配信する。従来は、CDやDVDを購入しなければ地図更新は可能だったが、本システムでは、サーバの地図を更新するだけでよい。

(2) POI情報配信 地図情報と同様、サーバは最新のPOI情報を持つ。ユーザは、POI情報が必要な地域、POIのカテゴリーをサーバに送信し、サーバは要求に応じてPOI情報を検索する。これにより地図と同様、サーバのPOI情報を更新するだけで最新のPOI情報を提供できる。

(3) 経路探索・誘導 車載端末は、現在地座標、目的地座標、現在時刻、状態をサーバに送信し、サーバが経路探索を実行する。サーバは経路探索エンジン、最新地図、最新POIデータベースを保持しており、経路計画が可能である。

サーバは、経路探索結果を車載端末に送信し、車載端末は、サーバから受信した経路に基づいて経路誘導を実行する。経路端末はGPS（Global Positioning System）で現在地を常に計測し、誘導ポイントに近づいたら進行方向を矢印またはにする。

車載端末が送信する目的地の座標は、地図上で指定してよい。POI情報配信でサーバから得たPOI情報もよい。つまり、上記(1)、(2)の機能も組み合わせることにとって経路探索・誘導が実現できる。

(2-2) 課題 本システムでは、オプションナビゲーションという性格上、移動中でも使用可能な通信手段が必要である。しかし、現在の携帯電話は最適であると考えられる。本システムにおいては、携帯電話の使用に関しにくいいくつかの課題が挙げられる。

第1の課題は、データダウンロード可能エリアである。自車が通信障害に入った場合、経路地図はサーバからダウンロードできなくなる。しかし、通信障害においてもそれなりのサービスを享受できるような仕組みが必要である。

第2の課題は、通信データ量である。本システムでは携帯電話の通信速度でユーザに不自由を感じさせない程度に通信データ量を抑える必要がある。また、ユーザが支払う携帯電話料金についても考慮する必要がある。携帯電話の料金設定は、時間制あるいは相違制による課金がメインである。したがって、長時間にわたるサーバアクセス数や大容量データのダウンロードが頻繁にあると、ユーザに割高感を与えてしまう。そこで、頻繁なアクセス、長時間アクセス、大容量データのダウンロードを避ける仕組みが必要である。

第3の課題は、通信が切れた場合の対処である。電波状態によっては、携帯電話の通信が切れてしまう。もし通信中に切られてしまったら、ユーザは通信料金をかけて再度ダウンロードを実行しなければならない。

ここで、他方における類似システムとの比較を、表1に示す。ここで比較対象として挙げたシステムについては、第6章にて述べる。尚、Aを(6-1)、Bを(6-2)、Cを(6-3)にてそれぞれ述べる。

ここで挙げたシステムでは、車載端末とサーバが協調してナビゲーションサービスを提供するという点で、我々のシステムと共通している。しかし、経路探索システムの新しき探検システムのそれは車載端末で供給している。一方、本システムでは最小限の機能に絞ったために、類似システムに比べて低価格で実現が可能である。

通信プロトコルやフォーマットにおいては、本システムにおいてはHTTP（Hyper Text Transfer Protocol）でHTML（Hyper Text Markup Language）データを渡すこととする。

表1 類似システムとの比較

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Our System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>HTTP</td>
<td>Voice</td>
<td>Private Line</td>
<td>HTTP</td>
</tr>
<tr>
<td>Format</td>
<td>HTML</td>
<td>None</td>
<td>Binary</td>
<td>HTML</td>
</tr>
<tr>
<td>Route Calculation</td>
<td>Local</td>
<td>None</td>
<td>Local Server</td>
<td>Binary</td>
</tr>
<tr>
<td>Map</td>
<td>Server</td>
<td>CD/DVD</td>
<td>CD/DVD</td>
<td>Server</td>
</tr>
<tr>
<td>Terminal Cost</td>
<td>¥200k</td>
<td>¥200k</td>
<td>¥200k</td>
<td>¥50k</td>
</tr>
</tbody>
</table>

図1 システムのコンセプト

Fig. 1. System concept.
図 2 地図配信

Fig. 2. Map distribution.

うにしてなるべく乳用性を持たせるようにし、乳用ブラウザを活用する。類似システム A は HTML を採用しているので、これは独自の拡張部分が含まれている。サービスの拡張性を考えずば、拡張部分が無い本システムが有利であると考えられる。

地図と経路探索エンジンは、本システム以外においては CD/DVD で提供される。CD/DVD は、大容量のデータを提供でき、どこでも経路探索が可能であるという点で有利である。しかし、本システムでは havoc などの情報が更新が可能であり、この点においては CD/DVD による情報提供に比べて有利であると考える。

（2-3）解決手段

上記の課題の解決策を次に述べる。第 1 の課題の解決策として、あらかじめ車載端末に、ある程度の量の地図データを持っておくようにする。小型メモリカードをパソコンにセットし、運転中に地図や経路をダウンロードして格納する。これを車載端末にセットすれば、ナビゲーションシステムとして動作する。

第 2 の課題の解決策として、サーバから送る地図は、端末に必要なデータだけとし、更に送る地図データに圧縮を施して車載端末に送信する。図 2 に、ここで地図配信方法の概念図を示す。

表 2 地図データのサイズ（茨城県日立市）

Table 2. Map data size (Hitachi City, Ibaraki).

<table>
<thead>
<tr>
<th>Level</th>
<th>Original Size (byte)</th>
<th>View Data Only Size (byte)</th>
<th>View Data Size (byte)</th>
<th>Compressed Size (byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>15,518</td>
<td>9,023</td>
<td>6,495</td>
<td>5,471</td>
</tr>
<tr>
<td>Level 1</td>
<td>18,885</td>
<td>12,840</td>
<td>6,045</td>
<td>5,914</td>
</tr>
<tr>
<td>Level 2</td>
<td>18,072</td>
<td>13,298</td>
<td>6,774</td>
<td>6,883</td>
</tr>
<tr>
<td>Level 3</td>
<td>73,079</td>
<td>49,099</td>
<td>24,080</td>
<td>21,329</td>
</tr>
<tr>
<td>Level 4</td>
<td>82,480</td>
<td>11,875</td>
<td>70,605</td>
<td>19,712</td>
</tr>
<tr>
<td>Level 5</td>
<td>15,675</td>
<td>8,545</td>
<td>7,130</td>
<td>3,812</td>
</tr>
<tr>
<td>Level 6</td>
<td>852</td>
<td>724</td>
<td>650</td>
<td>391</td>
</tr>
</tbody>
</table>

表 3 地図データのサイズ（東京都千代田区）

Table 3. Map Data size (Chiyoda Ward, Tokyo).

<table>
<thead>
<tr>
<th>Level</th>
<th>Original Size (byte)</th>
<th>View Data Only Size (byte)</th>
<th>View Data Size (byte)</th>
<th>Compressed Size (byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>82,578</td>
<td>42,565</td>
<td>40,013</td>
<td>23,464</td>
</tr>
<tr>
<td>Level 1</td>
<td>124,921</td>
<td>66,862</td>
<td>58,059</td>
<td>44,357</td>
</tr>
<tr>
<td>Level 2</td>
<td>110,778</td>
<td>72,730</td>
<td>38,048</td>
<td>45,270</td>
</tr>
<tr>
<td>Level 3</td>
<td>88,957</td>
<td>50,235</td>
<td>38,722</td>
<td>26,322</td>
</tr>
<tr>
<td>Level 4</td>
<td>82,840</td>
<td>41,875</td>
<td>40,965</td>
<td>19,712</td>
</tr>
<tr>
<td>Level 5</td>
<td>15,675</td>
<td>8,545</td>
<td>7,130</td>
<td>3,812</td>
</tr>
<tr>
<td>Level 6</td>
<td>852</td>
<td>724</td>
<td>650</td>
<td>391</td>
</tr>
</tbody>
</table>

ことが可能である。

尚、今回使用する地図データには、3次元推画のためのデータは入っていない。既存のカーナビゲーションシステムでは、3次元推画を採用しているものが多いとてもであり、本システムにおいても対応するが望ましい。しかし、今回の開発では、経路案内及び現在地確認ができるための最低限のデータだけを通信し、通信データ量をできるだけ少なくすることを優先課題とし、3次元推画については今後の課題とする。

第 3 の課題については、通信が切れた場合の再接続方法を検討する必要がある。浅川は Software Agent において、通信切断における再送制御のアーキテクチャを提案している。これは、図解切断が発生した際に、アプリケーションに通知することなく時間内に有線再接続を実現して、セッションの維持を図るものである。この解決策は、オフボードナビゲーションシステムにおいても有効であると考えられる。

但し、今回の開発においては、オフボードナビゲーションのアーキテクチャの構築を最優先とし、再送制御については今後の開発課題とする。

3. プロトタイプ開発

(3-1) システムの概要

プロトタイプの構成を図 3
に示す。車載端末は、デッシュボード上等に設置し、携帯電話を通じてインターネット上のサーバにアクセスする。車載端末は、地図配信、POI配信、経路探索をサーバに要求する。車載端末にはGPSが接続されているので、現在地情報の地図やPOIをサーバにリクエストすることもできる。経路をダウンロードすると、GPSで現在地を計測しながら経路誘導を実行する。

車載端末は、小型セキュリティーアードを備えており、事前に地図を格納しておくことが可能である。しかし、小型セキュリティーアード容量の制約上、システムでは地域を限定して地図を用いることにした。しかし、Level5、Level6においては、全国分を持つようにした。つまり、システムを使用する地域周辺の詳細地図とスケールの粗い全国地図を持つことになる。

予め持っておく地図の容量について、茨城県付近と東京都付近の例を表4に示す。尚、この地図データは、汎用の圧縮アルゴリズムで圧縮しており、表4で示すサイズは圧縮後のものである。

予め地図を持っておくことによって従来の車載端末が詳細地図をダウンロードできなくなても、地図を表示したり、その上の経路を表示したりすることが可能である。したがって、詳細地図が使えない状況であっても、カーナビのサービスがまったく受けられないという状況は避けられる。

経路についても同様に、ダウンロードした後で小型セキュリティーアードに格納する。したがって、駐車などでエンジンスイッチを切としても経路データが消えることは無く、再出発後もサーバにアクセスすることなく、継続して経路誘導が可能です。

(3-2) 操作
ユーザは、リモコンを用いて車載端末を操作し、次のような機能を実行することができる。

(1) 地図の操作
ユーザは、従来のナビゲーションシステムと同様に、地図をスクロール、拡大・縮小することができる。地図操作の途中で、必要な地図が車載端末に無かった場合に、地図のダウンロードするかどうかをユーザに尋ねる。ユーザがOKを選択すれば、サーバから地図をダウンロードする。

ダウンロードされた地図は小型セキュリティーアードに格納され、再びその地図が必要になった場合は、サーバからダウンロードせず、小型セキュリティーアードから読み出す。

(2) POI選択による目的地指定
リモコンの「メニュー」キーを押すとブラウザが起動され、サーバにアクセスしてHTMLで記述されたメインメニューをダウンロードして表示する。メニューはいくつかの階層に分かれており、大ジャンル→小ジャンル→都道府県→市町村→POIリストの順にリストをダウンロードしていく。最後にPOIを選択すると、POIの名称、住所、電話番号などがブラウザに表示される。その画面には「決定」ボタンがあり、それを押すと、ユーザが選択したPOIを目的地とする経路探索をサーバに要求する。その後、車載端末はサーバから経路を受信して地図上に表示し、車載端末が経路誘導を開始する。

従来型のナビゲーションシステムは、機種ごとにクスタマイズされたメニューを持っている。したがって、もしPOI情報が更新されると、メニューも更新しなければならない。

一方、システムでは、上記のようにPOI検索メニューをHTMLで記述してサーバから配信するため、車載端末のソフトウェアを更新することなくPOI情報の更新が可能である。したがって、車載端末はブラウザを持ってさえいれば、最新のPOI情報を入手することができる。

(3) 地図上の目的地指定
地図が表示されている状態で、ユーザがリモコンの「決定」ボタンを押すと、表示されている場所を目的地とした経路探索をサーバに要求することができる。

表4 予め保持している地図データ容量

<table>
<thead>
<tr>
<th></th>
<th>Tokyo (byte)</th>
<th>Ibaraki (byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,617,638</td>
<td>1,738,808</td>
</tr>
</tbody>
</table>

図3 システム構成
Fig. 3. System configuration.

図4 車載端末
Fig. 4. Terminal system.

1868

その後、車載端末はサーバからの経路を受信して地図上に表示し、車載端末が経路路線を開始する。

(3-3) 車載端末のハードウェア
車載端末は、ダッシュボード上等の狭い場所でも設置できるよう、できるだけコンパクトなサイズにすることが必要である。従来型のナビゲーションシステムのような高価なものではなく、ユーザに受け入れられる。

図4は、車載端末の構成を示した写真である。車載端末のサイズは、横15cm×縦10cmである。図4を見てもわかるように、CDやDVD等の大容量外付けディスクドライブを持つが、この車載端末の特徴である。これによって、車載端末の低コスト化を図ることが可能になる。

図5は、車載端末のハードウェア構成である。車載端末は、RISC CPU、グラフィックスプロセッサ、8MB DRAM、シリアルポート、小型メモリカードスロット等から構成されている。GPSと携帯電話はシリアルポートに接続される。

(3-4) 車載端末のソフトウェア
図6は、車載端末のソフトウェア構成である。図6に示すように、車載端末はナビゲーション機能だけでなく、インターネットブラウザを備えている。ブラウザは、POI検索におけるメニュー選択に用い、ナビゲーション機能と連携して動作する。例えば、ブラウザで目的地を検索し、ナビゲーション機能でその目的地をサーバに送って経路探索結果を受け取り、地図上に表示、誘導などが可能である。

ここで、ブラウザとナビゲーション機能との連携について述べる。ブラウザとナビゲーション機能の切り替えが必要になる場合を列挙する。

(1) ブラウザからナビゲーション機能への切り替え
・地図表示中にメニューを呼び出すためにリモコンの「メニュー」キーを押したとき

(2) ナビゲーション機能からブラウザへの切り替え
・ブラウザで指定したPOIの地図を見るとき
・ブラウザで現在地周辺検索メニューを選択したとき

上記(1)については、ブラウザ制御用のAPI(Application Program Interface)をナビゲーション機能から呼び出すことによって実現可能である。

上記(2)については、ブラウザから別のアプリケーションを起動する仕掛けが必要である。このための機能として、ヘルパーをアプリケーションがあり、今後の開発では、ナビゲーション機能を、ブラウザのヘルパーアプリケーションとした。ヘルバーにアプリケーションとは、ユーザが指定するcontent-typeに応じて起動されるアプリケーションであること。

ブラウザで指定した地点周辺の地図を見る場合、サーバ、その地図の緯度・経度が記述されたファイルをダウンロードする。そのファイルのcontent-typeを独自に決めており、そのcontent-typeに反応してナビゲーション機能が起動される。

現在地周囲検索を実行する場合、メニューや選択すると、現在地を計測するという操作を含んだファイルをダウンロードする。そのcontent-typeに反応してナビゲーション機能が起動される。

図6 車載端末ソフトウェア
Fig. 6. Terminal software.

図7 サーバソフトウェア
Fig. 7. Server software.
インターネット機能の発展を背景に、GPSから現在地を取得し、ブラウザやメールを呼び出してブラウザで検索を求める。

(3-5) サーバソフトウェア
サーバには、経路探索モジュール、POI検索モジュール、地図検索モジュールがあり、それぞれのモジュールで用いるデータベース、POIデータベースがある。サーバソフトウェアは、これらの機能を備えたCGI(Common Gateway Interface)で実装されており、それぞれのモジュール間のインタフェースにはXML(Extensible Markup Language)を採用した。

CGIでは、各モジュールから受け取ったXMLデータをHTML変換して車載端末に配信する。但し、経路データと図面データはバイナリファイルとして車載端末に送信する。

(3-6) 経路探索・誘導
経路探索の概要を示す。経路探索エンジン、最新地図、最新POIデータベースを車載端末に配信する。サーバにおいては、経路探索エンジンが最新地図に基づいた最適経路を計算し、経路データ、誘導ポイントデータを車載端末に送信する。誘導ポイントデータには、交差点の座標、誘導方向が含まれている。
経路データは、地図上上の経路表示と経路誘導判定のために使用するもので、経路の形状を線で示すので表現したものである。誘導ポイントデータは、誘導ポイントの線で誘導方向の情報をあわせたものである。車載端末は、GPSによって現在地を把握することができる。以上の2つのデータを受け、車載端末は現在地と経路データの距離を経路上に乗車するかどうかを判断する。経路上の誘導ポイントに接近したと判断すると、車載端末は、誘導方向を画面に表示し、音声にて誘導方向をガイドする。

図8にシステムにおいては、必ずしも車載端末に地図を持たない必要は無い。この場合、データベースのナビゲーションシステムとして動作することが可能である。したがって、地図がダウンロードできず、車載端末にも車で位置地図が無い場合でも、経路誘導が可能である。
経路探索において、その時点まですでに表示していた地図が車載端末に無い場合、予め保存しておりたいゃいスケールの地図を表示し、地図はダウンロードしない。これは、運転中にダウンロード操作をさせるのは安全上の問題があるという理由で、自動ダウンロードさせる方法も考えられるが、通信料金がかかる動作をシステム側で勝手に実行するのは好ましくない。この場合、課金を確認するダイアログボックスを表示させる方法も考えられるが、これも安全上の問題があると考えられる。

4. システム収容性評価
(4-1) 評価方法
システムの収容性について、次の2種類の方法で評価した。
(1) グループインタビュー 被験者を6人ずつのグループ3つ(A~C)に分け、それぞれのグループに対してインタビューを実施した。グループの構成は、次のようにある。尚、被験者は皆を所有している(家族所有でも可)首都圏の居住者である。
Aグループ:男子大学生
Bグループ:カーナビ未購入の独立系人男性
Cグループ:自分で車を購入した、子供のいない30代以下の女性(未婚、結婚は問わない)
まず、会合がシステムのコンセプトを説明して、被験者に意見を述べてもらう。次に、システムのデモンストレーションに被験者に見てもらい、意見を述べてもらった。
(2) フィールド調査 約20名の被験者に1ヶ月間、車載端末と通信用携帯電話を貸し出し、車に設置して使用してもらった。通信料金は筆者の負担とした。携帯電話は46kbpsパケット通信に対応する機種とした。
1ヶ月後、被験者に対してグループインタビューを実施し、使用した感想等を述べてもらった。
尚、上記(1)、(2)共通であるが、グループインタビューの際は、被験者の直面の発言を阻害しないため、筆者らは立ち会わなかった。インタビューの会合者について、筆者らと利害関係の無い人物にお願いした。
(4-2) グループインタビューの結果
(1) 肯定的評価 コンセプト評価で得られたコメントの主なもの次の通りに示す。
- 情報更新の効用が高く、手間もかからない
- 通話料がかからないって本体が安いかがよい
- 1回の接続だけでも良い
この結果は、新地図を使用できること、車載端末のコストが安いか、といった要因によるものであると考える。この結果を踏まえ、システムのコンセプトは受け入れられるものであると解釈した。
(2) 不安要素 不安要素について次に示す。
- 電波が届かない場所ではどうするか
電波が届かない場所での使用については、経路探索をサーバに要求できないという点で不利である。また、接続が切れた場合の再接続も、今後の課題として検討する必要がある。通信費用については、やり直しの度に課金されることが無い定額制の採用があるとされている。

4-3 フィールドトライアルの結果 フィールドトライアルの被験者に対し、後日アンケートを実施した。被験者の多くが不満と感じた項目を示す。

携帯電話と本体との接続の手間 グループインタビューやデモンストレーションでは問題にならなかったが、実際に使用する場合には大きな問題になることが明らかになった。本体に通信モジュールを内蔵する等の工夫が必要であると考えられる。

5 目的地検索メニュー階層の賢い 本システムでは、目的地検索の手段としてメニューを採用した。しかし、ユーザは車に乗り前に目的地を決めておき、車中でメニューから目的地を検索するという方法は、ユーザにとっては良さそう。

また、メニューの一つ一つがHTMLで記述されており、選択するたびに次のメニューをサーバからダウンロードすることは問題とされた。メニュー階層が深くなると、目的の項目にたどり着くまでに多大な時間と通信費用がかかり、時間と費用がかかった。したがって、音声入力等を用い、深いメニュー階層をたどり着くための新たな目的地設定方法を検討する必要がある。

ダウンロード時間 これは、現在の通信環境に依存する問題であるため、根本的な解決には時間がかかる。したがって、時間帯を考慮してメニューを表示する、あるいは通信回数を減らす工夫が必要である。

5 システム性能評価

5-1 評価項目 本章では、第4章で課題となったメニューに関することと、第2章、第3章で課題となった通信に関して評価する。本研究では例として、茨城県水戸市のガソリンスタンドを目的地として設定した、経路探索を終了するまでの操作を評価する。経路は一般道路優先で計算した。

ダウンロードするHTMLファイル数、合計ファイル容量、経路データ量を表5に示す。経路データは、東京を始点とし、その場合を考えた。

5-2 運動回数 受容性評価で大きな問題となったのは、メニューのダウンロードである。メニューはHTMLで記述されており、階層が深いために、目的地設定までに時間がかかっていた。

表5 POI選択時のダウンロードファイル

<table>
<thead>
<tr>
<th>The number of HTML files</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HTML file size</td>
<td>38KB</td>
</tr>
<tr>
<td>Route data size</td>
<td>5KB</td>
</tr>
</tbody>
</table>

従来型のカーナビでは、目的地設定時のメニュー選択回数は、多くの場合に高い数値であることが考えられる。本システムにおけるPOI選択操作には改良の余地があると考える。

5-3 通信時間、料金 5-3の条件における通信時間、通信料金を、表6に示す。PDC (Personal Digital Cellular)においては、通信量の他に、実効通信速度を50%とみなした場合についても示した。尚、パケット交換は、64Kbpsで0.1円/128バイト、PDCは9600bpsで10円/15秒とした。

ダウンロード時間を考慮すると、9600bpsのPDCを用いた場合、実効速度を理論速度の5割と仮定すると、1秒以上のダウンロード時間が必要である。HTMLから選択を行った場合も考慮すれば、目的地設定までに2分程度の時間がかかると考えられる。したがって、経路のダウンロード時間を考慮すると、操作開始から経路誘導開始まで2分以上かかることがある。従来型のカーナビでは、操作開始から経路誘導開始まで30秒以内で済むことを考えると、通信時間、通信回数をいかにして減らすかが今後の課題となる。

通信料金は、1回の通話料算出あたりでは100円以内に収まっている。しかし、PDCの場合、メニュー選択も含めず、通信速度、通信時間、通信データ量によっても大きく変わること、長い通話を計算すると通信料金は高くなる。また、使用頻度が多いユーザにとっては、通信料金の負担が大きくなる。したがって、使用頻度の高いユーザは、システムは、頻繁に更新をせず、使用頻度が少ないユーザに向けていると言える。一方、定額料金の場合は、使用頻度の高いユーザにとっては利用しやすくなると考えられる。

6 他所の動向

6-1 インターネットを用いたシステム 遊ばは、インターネット上サイトでPOIを検索し、それを目的地に設定するシステムを開発した。カーナビ端末は、サーバに対して目的地の検索を要求し、その結果をHTMLを拡張したフォーマットでデータをダウンロードする。その
後、カーナビ端末で目的地までの経路を計算する。また、目的地検索以外にドライブ計画機能があり、ユーザ独自のコースを設定してサービスに登録することができる。

このシステムはHTTPを用いており、既存の通信プロトコールをそのまま使える点に特徴があり、汎用性がある。しかし、データフォーマットはHTMLを拡張しているため、ブラウザは独自に開発する必要がある。

〈6-2〉 オペレータサービス
Hirabeらは、センサーにペレータを配置する方式でナビゲーション機能を実現した。車載端末に携帯電話を用いないでおり、その携帯電話からセンサーのオペレータに電話をかけ、目的地検索を要求する。センサーで目的地検索を要求する。目的地情報は車載端末に送り、車載端末で目的地までの経路を計算する。

本システムは、オペレータが対応することによって、ユーザに対して柔軟な対応が可能であることを特徴としている。

〈6-3〉 リアルタイム通信サービス
Noguchiは、車載端末に対するリアルタイム通信サービスを実現した。このサービスでは、通信を用いて、交通情報、駐車場情報、ニュース、天気などのリアルタイム情報、目的地設定のためのPOI情報提供する。更に、スピード情報や事故、警察のような緊急情報サービスも提供する。経路探索は、車載端末で実行する。

7. 結 言

本論文では、我々が開発したオフボードナビゲーションシステムについて述べた。本システムにおいて、車載端末はCDやDVD等の大容量記憶デバイスを持たず、ネットワーク上のデータベースから必要な情報をダウンロードすることによって、ナビゲーション機能を実現する。その機能は、サーバ側における路線検索、地図検索、POI検索である。その結果、従来型システムよりもコンパクトなシステムを実現することができた。

本システムを、グループインタビュー、フィールドラウンドによって評価した結果、システムのコンセプトは受け入れられるものであることがわかった。しかし、実現において、携帯電話の本体への接続、携帯電話による通信、メニューフォームの深さに課題があることがわかった。

（平成14年10月10日受付、平成15年3月7日再受付）

文 献

（2）SRD Japan : "2001年版世界In-Car Computing市場の調査研究", p. 17 (2001-6)

（98-10）

1872

1872
森岡 慎雄
（非会員） 昭57 九州大学工学部電子工学科卒。
昭59 国立大学院修士課程修了。同年（株）日立製作所入社。現在、同社オートモティブシステムグループに所属。テレマティクス及びカーナビゲーションの事業企画に従事。情報処理学会、電子情報通信学会、IEEE、ACM各会員。

山根 公也
（正員） 昭61 京都大学大学院修士課程修了。
同年（株）日立製作所入社。以来、ヒューマンインタフェース、ITS、鉄道システムの研究に従事。博士（情報学）

中村 浩三
（非会員） 昭52 東京工業大学工学部卒。同年（株）日立製作所日立研究所入社。ファクシミリシステム、車載情報システムなどの開発に従事。現在、同社オートモティブシステムグループに所属。IEEE、電子情報通信学会、自動車技術会、画像電子学会各会員。

仲村 昌
（非会員） 昭48 阪南大学電子通信学科卒。
同年、（株）日立製作所東海製造所入社。平8（株）ザナヴィ・インフォマティクス入社。通信型カーナビゲーションシステムおよびシステム向けサポートシステムの研究開発に従事。