ホスト-ゲスト薄膜により作成された
プリズム結合導波路の光双安定特性

学正員 小谷 範幸**
正 員 古橋 秀夫**
正 員 内田 悦行**
正 員 大橋 朝夫*
正 員 小嶋 憲二*
正 員 落合 鎮康*
正 員 水谷 照彦***

Optical Bistable Characteristics of Optical Quasi-waveguide Prepared with Host-Guest Thin Film
Noriyuki Kotani*, Student Member, Hideo Furushashi**, Member, Yoshiyuki Uchida**, Member, Asao Ohashi*, Member, Kenzo Kojima*, Member, Shizuyasu Ochiai*, Member, Teruyoshi Mizutani***, Member

The host-guest thin film using nonlinear optical material was fabricated by the spin coat method on the bottom face of a right-angled prism dropped down the solution of tershahi-Butyl Vanadyl-phthalocyanine (tt-Bu)nVOPc) and PMMA. To improve the nonlinear optical characteristics, the host-guest thin film was treated with organic gas. Optical bistable characteristics were evaluated by using the optical quasi-waveguide prepared with host-guest thin film after and before organic gas treatment. After and before organic gas treatment, optical bistable characteristics were observed by changing the incident angles of laser beam to prism. Optical bistable characteristics after organic gas treatment were compared with before treatment. After treatment, optical bistable behavior is more sensitive than that before treatment. Moreover, the organic gas treating time dependences of optical bistability were investigated by using the measuring equipment of optical bistability.

キーワード：プリズム結合導波路, 光双安定特性, チャリブチルバナジルフタロシアン(VOPc), ホスト-ゲスト薄膜, 有機ガス処理
Keywords: Optical Quasi Waveguide, Optical Bistable Characteristics, Tershahi-Butyl Vanadyl-phthalocyanine (tt-Bu)nVOPc, Host-Guest Thin Film, Organic Gas Treatment

1. はじめに

近年、3次非線形光学現象を用いた情報処理を行うため、入射光強度で屈折率や光吸収係数が変化する効果を活用した光双安定性が、光メモリ、光スイッチなどの光エレクトロニクス素子へ適用することが期待されている(1)。また、パナジルフタロシアン(VOPc)をはじめとする化合物で作成された非線形光学材料の非線形光学性がπ共役系に起因する電子であるため、数十分メートルと高速である。そのため、将来的光エレクトロニクス技術において、高速安定性を有する光学材料として不可欠であり、大きな期待が寄せられている。これまで、ポリメチルメタクリレート (PMMA) と可溶性パナジルフタロシアン (tetra-octodecanolamido-substituted vanadyl phthalocyanine) で作成されたホスト-ゲスト薄膜により、プリズム結合導波路が成作され、その光双安定特性が評価された(2)(3)。Y. Wang らは(3)，二個のプリズムを用いプリズム結合導波路に比し軽量・コンパクトな一列のプリズム結合導波路で、光双安定特性を測定し、その物理的意味付けを行った。しかししながら、異なる入射角で測定されたプリズム結合導波路の光双安定特性はバラツキが大きく、安定性に乏しい。また、理論の根拠に照らす観点を欠いた。さらに、軽量・コンパクト化は検討されなかった。そこで、光双安定特性のバラツキ低減と安定性の向上、プリズム結合導波路の軽量化、
コンパクト化には、3次非線形光学感受率の大きな色素薄膜作成が必要になる。相形態が相II（三斜晶系）である色素薄膜が大きな3次非線形光学感受率を有することから、相IIの形態を有する色素薄膜を作成することが重要である。薄膜の相形態を相Iから相IIへ転移するには、色素薄膜を有機ガス処理する方法がある。

本研究では、有機非線形光学材料を用い、スピノン・コート法によってホスト・ゲスト薄膜を直角プリズム上に作成し、プリズム結合導波路とした。このプリズム結合導波路を光双安定測定装置により、光双安定の入射角依存性を測定、評価した。また、プリズム結合導波路の光双安定特性の理論的根拠を明らかにした。さらに、数値ガス処理されたホスト・ゲスト薄膜により、光双安定の感度向上とパラジウムの低減、軽量・コンパクト化を目指した。

2. 実験方法

本実験では、非線形光学材料として、パナジウムフタロシアニン（VOPc）にブチル基を付加し、有機溶媒への溶解性をもたせたターザリブチルパナジウムフタロシアニン（t-BuVOPc）を用いた。図1に（t-Bu）VOPcの分子構造を示す。基板材料には、直角プリズム（屈折率：1.52）を用いた。ホスト・ゲスト（H-G）薄膜を作成するため、ホスト材料には、ポリメタクリル酸メチル（PMMA）、ゲスト材料には、（t-Bu）VOPc、溶媒に1,2,2,テトラクロロエタンを用いた。PMMA、（t-Bu）VOPcを溶媒1,2,2,テトラクロロエタンで溶かした。その後、これらの溶液を混合し、H-G薄膜作成用溶液を作成した。スピノン・コート法により直角プリズム底面上に厚さ3μm、屈折率1.47のH-G薄膜を作成し、プリズム結合導波路とした。また、作成された薄膜の非線形光学感受率を向上させるために有機ガス処理を行う。処理条件としては、溶剤1,2,2,テトラクロロエタン、処理温度24℃（室温）、処理時間25hrsとし、密閉した容器内で乾燥蒸気に曝した。有機ガス処理前後のH-G薄膜の形態が、Vis/UVスペクトルにより評価され、非線形光学特性がメカノフレンチ法による3次高調波（THI）强度の入射角依存性より評価された。

図2（a）に本実験で用いた光双安定測定装置の構成図を示す。光源として、Nd : YAGレーザ（出力：450mJ、波長1064nm、パルス幅：5ns、繰り返し周波数：10Hz、P偏光）を用い、光の検出にはpinフォトダイオード（浜松ホトニクス製SS971型）を用いた。レーザ光をビームスプリッタにによる2分割し、基準入力光と集光レンズ（焦点距離：150mm）で集束し、プリズム結合導波路の入力とした。出力光として、図2（b）に示すように、薄膜の反射光を測定した。本実験では、入射光が薄膜内に最初入射するときの角度を最適結合角（θ0＝8°）とし、実験でθ＝35.2°とした。入出力光の波形をデジタルオシロスコープ（2.5GS/s）で同時測定し、光双安定特性の評価を行った。これから、最適結合角を理論的に検証した。

透過率

\[T = \frac{4 \cos^2 \theta}{(\cos \theta + \sqrt{n^2 - \sin^2 \theta})^2} \]

図1（t-Bu）VOPcの分子構造

![Molecular structure of (t-Bu) VOPc](image1.png)

図2 光双安定測定装置

(a) Experimental set-up of optical bistability

(b) Structure of optical quasi-waveguide

![The measuring equipment of optical bistability](image2.png)
ここでは、n=プリズムの屈折率/ホストゲスト膜の屈折率
=1.03、入射角 0i=35.2°を代入すると、T≈1 となる。そこで、
最適入射角を 0i=35.2°とした。

3. 実験結果および考察

(3.1) 実験結果

図 3 に有機ガス処理前後の H-G 薄膜の Vis/UV スペクトルを示す。処理前では、Q ベンゼン帯の強度 640、710 nm に吸収ピークが確認できる。

ゲスト分子の (t-Bu)4VOPc が凝集体を形成し、PMMA

中に分散した相 1 の形態が形成されることを示す。処理後
の Vis/UV スペクトルでは、640、710nm の吸収ピークが有

機ガス処理前と比較して減少し、820nm に新たな吸収ピークが

確認できる。これは相状態の変化を意味しており、VOPc

薄膜の結晶構造がもろやく相 II の状態であった場合、820nm

に吸収ピークを示すことから、有機ガス処理により(t-Bu)4VOPc

凝集体は合併し相 II の構造を有する結晶状へ

相転移したことを示唆する。

図 4 に有機ガス処理前の H-G 薄膜の第 3 次高調

波(TH)強度の入射角依存性を示す。有機ガス処理前とも

入射角 0i 付近で最大となる左右対称の入射角依存性を示
す。また有機ガス処理前では、TH 強度が約 0.005 [a.u.] に比
し、有機ガス処理後では、TH 強度が約 0.03 [a.u.] と約 6 倍を
示した。これにより、有機ガス処理前の H-G 薄膜の微結晶が
成長したすることを示唆する(6)。ただし、波長 355nm の光強度(A)が
0.284 であること、THG が A に比例することから、出力の

THG は膜内で発生した THG の 30%以下になる。

ここで、試料の TH 強度から第 3 次非線形光学感受性 χ(3)

を計算する。χ(3)の計算式を次式で示す(6)。

\[
\chi(3) = \frac{2k \cdot I_{THG}}{I_{3ω}} \left(\frac{I_{ω}}{I_{3ω}} \right)^{\frac{3}{2}} AB \quad \cdots (1)
\]

ただし、χ(3)：溶融石英の 3 次非線形光学感受率、I_3ω：

試料の TH 強度、I_ω(3ω)=4.8：溶融石英の TH 強度、I_ω=6μm

溶融石英のコヒーレンス長、λ_ω=160μm：基本波の波長、κ：

溶融石英と(t-Bu)_4VOPc 薄膜試料のマーケーフリンジ装置

への配置のずれに対する補正値である。A, B の計算式を次

に示す。

\[
A = \frac{-n_{3ω} + 1}{n_{3ω}' + 1} \left(\frac{n_{ω} + 1}{n_{ω}' + 1} \right)^{3} \quad \cdots (2)
\]

\[
B = \left[\frac{(n_{ω} - n_{3ω})^2 + (k_{3ω})^2}{1 - \exp \left(-\frac{dα}{2} \right)^2 + (\Deltaψ)^2 \exp \left(-\frac{dα}{2} \right)} \right]^{\frac{1}{2}} \quad \cdots (3)
\]

\[
\Deltaψ = 6π \left(n_{ω} - n_{3ω} \right) \frac{d}{λ_{ω}} \quad \cdots (4)
\]

ただし、n=4.3×10^5 cm⁻¹：TH 周波数における試料の吸収係数、n_ω=1.47：試料の基本波の屈折率、n_3ω=k_3ω=1.44±0.11：

試料の第 3 次高調波の複素屈折率、n_ω'=1.449、n_3ω'=1.48：基

本波と第 3 次高調波の溶融石英の屈折率である。Δψ は第 3

次高調波の位相不整合量である。この式より、有機ガス処

理前の試料の 3 次非線形光学感受率 (χ(3)) を見積もり

とる。未処理の試料では χ(3)=4.0×10^{-2} esu で、処理後の試

料では χ(3)=9.7×10^{-3} esu となった。以上より、有機ガス処

理により、3 次非線形光学感受率が向上することを示した。

図 4 有機ガス処理前の P 偏光入射による第 3 次

高調波強度の入射角依存性

Fig. 4. Incident angle dependences of TH intensity of

host-guest thin film after and before organic gas treat-

ment (P polarized laser light).
\(3 \cdot 2 \) 光双安定特性の理論解析

図 5 に光双安定素子の概念図を示す。反射する電磁波の振幅 \(E_r \) は、非線形屈折率媒質中を何回か往復して反射する波の和として書くことができる。

\[
E_r = rE_i + r^2E_i \exp(i\phi) + r^3E_i \exp(2i\phi) + r^4E_i \exp(3i\phi) + \ldots
\]

\(E_i \) 入射光の振幅、\(r, r' \) 表面と裏面での振幅透過率、\(r, r' \) 表面と媒質内での振幅反射率である。媒質の光屈折率 \(n \), 厚さ \(d \) の媒質に光が入射したとき、図 5 のように多重反射により光路差 \(\Delta \lambda = ab + bc \) が生じ位相がずれる。波長を \(\lambda \) とし、反射光 \(E_1 \) と入射光 \(E_0 \) の位相差は(6)式のように表される。

\[
\phi = \frac{4\pi nl \cos \theta}{\lambda}
\]

光入力 \(I_0 \)、光出力 \(I \) とし、(5), (6)より(7)式が与えられる。

\[
\frac{I}{I_0} = \left(\frac{1-r^2}{1-r^2 + 4r^2 \sin^2 \frac{\phi}{2}} \right)
\]

媒質の屈折率 \(n \) は、非線形屈折率のため(8)式で与えられる。

\[
n = n_0 + n_2 E^2
\]

(6), (8)式より

\[
\phi = \frac{4\pi n_1 l \cos \theta}{\lambda} + \frac{4\pi n_2 l \cos \theta}{\lambda} E^2
\]

\[
\gamma = \frac{4\pi n_1 l \cos \theta}{\lambda r^2}
\]

反射光振幅 \(E_r = E_i \) であり、\(I_r = \nu E^2 \) であることから、(9)式が次式で表される。

\[
\phi = \phi_0 + \gamma I_r
\]

また(10)式を(11)式のように変形する。

\[
\frac{\phi - \phi_0}{\gamma I_r} = \frac{I_r}{I_0}
\]

(7), (11)式より、\(I_r/I_0 \) を関数として考えると、図 6 (a), (b) のようになる。

図 6 (a), (b)の定量的な検討を以下に示す。未処理試料で、\(\delta = 0^\circ \)の位相差=43.8°、\(\delta = 1^\circ \)の位相差=360.43.4°になる。\(\delta = 1^\circ \)では、図 6 (a), (b)のD 点に対応する。図 10のレーザの光入力が減衰器で1/1000に減衰され、集光レンズで集光された場合、集光点のビーム面積が52 \(\mu \) \(\text{m}^2 \)であることを考慮し、焦点 \(\phi \)のレーザ入力強度 \(I \)は約10 \(\text{J}\text{m}^2 \)になる。これで計算された非線形光学屈折率は \(n_2 = 1.01 \)になる。この屈折率の変化で、反射光の光路差 \((2n) \)にも大きく干渉の正規排が起こる。したがって、正規排より、図 6 (a), (b)で、CDEFBの順の反射率が変化していることを示唆する。

(3-3) プリズム結合導波路の光双安定特性

図 7, 8 に有機ガス処理前後の最適結合角 \(\delta = 0^\circ \)の光双安定特性を

\[
\text{Phase difference } \Phi
\]

\[
\phi = 4\pi n\lambda \cos \theta
\]

\[
2m\pi
\]

\[
2(m+1)\pi
\]

(a) 透過率と位相

(b) 光双安定の繰返し現象

図 6 光双安定特性

Fig. 6. Optical bistable characteristics.
図7より、最適結合角δ=0°では、有機ガス未処理の試料において光双安定特性は観測されなかった。図8より有機ガス処理後の試料では、入力光強度0.2[μJ/mm²]〜0.8[μJ/mm²]において光双安定特性が観測された。これは、3次非線形光学感受率の小さい有機ガス未処理の試料では、光強度の増大による屈折率の変化が小さかったため、最適結合角では光双安定特性が観測できなかったと考えられる。また、有機ガス処理後の試料では、光双安定特性が観測された。これは、有機ガス処理されたH-G薄膜の3次非線形光学感受率が改善されたため、屈折率が処理前と大きく変化し、試料内に入射した光の光路長変化による位相のずれに原因することを示唆する。

図9, 10に、最適結合角よりδ=-1°ずらした入射角の有機ガス処理前後の光双安定特性を示す。図9より有機ガス未処理の試料では、入力光強度0.4[μJ/mm²]〜1.0[μJ/mm²]で光双安定特性が観測された。これは、入力光強度に対する変化が小さいが、膜内に入射した光の位相差が増大したために観測されることを示唆する。図10より、有機ガス処理後の試料では、入力光強度0.2[μJ/mm²]〜0.8[μJ/mm²]で光双安定特性が観測された。有機ガス処理後の試料では、屈折率の変化と位相差の増大により、未処理試料に比し高感度な双安定特性が観測された。

図11, 12に、δ=-2°の有機ガス処理前後の光双安定特性を示す。有機ガス処理前後ともに、最適結合角からのずれを大きくしても観測された。また、この入射角では、有機ガス未処理の試料が、有機ガス処理後の試料よりも大きな光双安定特性が観測できる。
図11 有機ガス未処理の光双安定特性（\(\delta=-2^\circ\)）
Fig. 11. Optical bistable characteristics before organic gas treatment (\(\delta=-2^\circ\)).

図12 有機ガス処理後の光双安定特性（\(\delta=-2^\circ\)）
Fig. 12. Optical bistable characteristics after organic gas treatment (\(\delta=-2^\circ\)).

図13 光双安定特性の有機ガス処理時間依存性（\(\delta=0^\circ\)）
Fig. 13. Organic gas treating time dependences of Optical bistable characteristics (\(\delta=0^\circ\)).
安定特性が観測された。これは、試料内に注入した光の光路長が大きく変化し、高密部の光の安定特性が観測されるこ
とを意味する。プリズム結合導波路の光の安定特性の理
論的根拠では、実用ガス処理された試料の2次非線形光学
感受率が改善され、高密度光安定特性化が続いて出されるため、
実用ガス未処理試料に比しより明確な理論的根拠が示され
た。

謝辞
本研究は、文部科学省私学助成学術研究助成金プロジェクト「21世紀支えるための材料開発－環境エネルギー、情報に貢
献する材料開発のための研究－」の一環として行われたもの
である。さらに、科学技术振興機構の援助により行われた。
(平成16年3月24日受理、平成16年8月2日再受理)

文献

中西八郎・小林隆史・中村晃・栃枝正:「非線形光学材料の
開発と応用」、シークレット、pp. 410-414 (1991-10)

小谷範幸（学生員）1978年12月26日生。2002年4月
愛知工業大学大学院工学研究科電気電子工学
専攻入学生、在学中、非線形材料の作成とその応
用に関する研究に従事。

古橋秀夫（正員）1962年4月4日生。1990年3月名古
屋大学大学院工学研究科博士課程後期課程修
了。同年名古屋大学工学助教授。エキシマレーザー
を中心としたレーザー装置の開発、分光学
的手法によるエキシマレーザーおよびニードルレ
ーザーの励起機構、リニアアパルモータによる高
速位置決め、RFマグネットロータリング
ンチ

内田悦行（正員）1940年12月21日生。1966年3月早
稲大学大学院理学研究科修士課程修了。名
古屋大学工学部助手、愛知工業大学工学部電
気工学科教授。現在同大学情報通信工学科教
授、工学博士。主としてオプトミクロテクノ
クスの技術の開発とその応用システムならびに
材料の開発に関する研究と教育に従事。レッサーチ
学会応用物理学会、SPIE 会員。

大橋朝夫（正員）1938年12月1日生。1970年3月名古
屋大学大学院工学研究科博士課程後期課程修
了。同年名古屋大学工学部助手、薄膜表面とバ
ルクの化学構造と電子構造の解析に関する研
究。電気絶縁材料、特に絶縁性液体の絶縁破壊
現象と電気伝導機構の研究、亜鉛、粉末、液体
の静電気帯電機構の解明と帯電防止に関する研
究、光非線形有機薄膜の作成と特性評価に関する
研究に従事。現在、愛知工業大学工学部教授、工学博士。

小橋寛三（正員）1941年12月22日生。1970年3月愛
知工業大学工学部工学研究科卒業。同年愛知工業大
学工学部助手、光非線形有機薄膜の電気伝導を測定し、光非線形性と電気伝導の
関係の解析に関する研究。分子薄膜の電気伝導研究。
特別有機分子の光敏感性を利用した高分子電池、
半導体を利用した電界効果トランジスタなどの
機能と性能に基づく製造と高機能化を追求する研究に従事。現在、愛
知工業大学工学部教授、工学博士。

藤合鶴彦（正員）1944年1月1日生。1966年3月愛知
工業大学大学院工学研究科卒業。同年愛知工業大
学工学部助手、1990年10月—91年9月まで
米国・カリフォルニア大学研究員。化学反応機構
の伝導機構の解明、非線形光学材料の
作成とその応用に関する研究に従事。現在、愛
知工業大学工学部教授、工学博士。

水谷照吉（正員）1941年5月9日生。1969年3月名古
屋大学大学院工学研究科博士課程（電子工学専
攻）修了。同年名古屋大学工学部助教授、1987
年7月同教授。1973年7月—74年12月カナダ
ラパル大学研究員。主に、誘電、絶縁材料、半
導体材料、薄膜ディスプレイ、有機エレクトロニク
スに関する研究に従事。現在、名古屋大学大学
院工学研究科電気工学専攻教授、工学博士。