電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
<音声画像処理・認識>
弱識別器にGenetic Image Networkを用いたアンサンブル画像分類法
中山 史朗白川 真一矢田 紀子長尾 智晴
著者情報
ジャーナル 認証あり

2011 年 131 巻 5 号 p. 958-965

詳細
抄録

Automatic construction method for image classification algorithms has been required. Genetic Image Network for Image Classification (GIN-IC) is the automatic construction method for image classification algorithms which include image transformation component using evolutionary computation, and its effectiveness has already been proven. In our study, we try to improve the performance of GIN-IC with AdaBoost algorithm using GIN-IC as weak classifiers to complement with each other. We apply our proposed method to three types of image classification problems, and show the results in this paper. In our method, discrimination rates for training images and test images improved in the experiments compared with the previous method GIN-IC.

著者関連情報
© 電気学会 2011
前の記事 次の記事
feedback
Top