電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
ニューラルネットワークによる音響ケプストラムを用いた紙幣の新旧識別
寺西 大大松 繁小坂 利寿
著者情報
ジャーナル フリー

1999 年 119 巻 8-9 号 p. 955-961

詳細
抄録
This paper proposes a method to classify new and used bills using the acoustic cepstrum pattern by neural networks. The proposed method deals with an acoustic signal which has been generated by the bill passing through a banking machine. By using an acoustic cepstrum pattern, the rough structure of the acoustic spectrum can be represented as the cepstrum with a smaller pattern size than the spectrum. The proposed method employs a neural network as the classifier. Two different types of the neural network, one is the three layered perceptron and the other is the competitive neural network, are used to evaluate which type is more suitable for classification of the cepstrum pattern. The experimental results show the effectiveness of the proposed method, and that the competitive neural network yields better classification performance than the three-layered perceptron.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top