半導体プロセスとプラズマ表面反応

非会員 津田健一郎（日本電気） 正員 数見秀之（日立製作所）
正員 中野俊樹（防衛大学校） 非会員 寒川誠二（東北大学）

Semiconductor Processes and Plasma Surface Reactions
Ken-ichiro Tsuda (NEC), Hideyuki Kazumi (Hitachi),
Toshiki Nakano (National Defense Academy) and Seiji Samukawa (Tohoku University)

Plasma surface reactions important in the processes of semiconductor fabrication are reviewed. Plasma etching mechanisms are discussed from the relationship between the etching characteristics and plasma diagnostics results. Oxide etching using a novel chemistry is also presented, which indicates the importance of the electron collision cross section measurement for various feedstock gases employed in plasma processing.

キーワード: プラズマエッチング、電子衝突断面積、表面反応、塩素プラズマ、フルオロカーボンプラズマ

key words: plasma etching, electron collision cross sections, surface reactions, chlorine plasmas, fluorocarbon plasmas

1. はじめに

放電プラズマの応用分野では、プラズマと表面との反応が重要となる例が多数ある。本稿ではそのうち、低温プラズマを用いた半導体微細加工技術を取り上げる。近年、半導体製造過程においては、超微細な加工技術が要求され、物理的・化学的反応を用いて数ミクロン単位の加工が行われている。超微細であるため、プラズマと半導体基板表面との反応に関する分子レベルでの理解と制御が不可欠であることは容易に想像される。以下では、特にプラズマエッチング法について、分子レベルの知見と制御手法等について現状を述べる。

2. プラズマエッチングと電子衝突断面積

半導体の微細加工技術において用いられている有力な手法が、低温プラズマを用いたプラズマ CVD 法、プラズマエッチング法である。この分野では、基板表面での現象の理解に主に研究の焦点が絞られてきた感がある。しかし近年、２階ビット級の超 LS1 時代に入り、0.1 μm レベルの超微細な加工技術の必要性が高まり、基板表面の現象を理解するだけではなく、導入ガスから分解生成した分子種の生成比を制御することも含めて、プラズマそのものの制御を如何に行うかという点で焦点が移ってきた。プラズマエッチングでは、基板表面の材料によって用いるガスが異なり（表 1）、用いるプラズマ源やプラズマ条件によって、ガス分子がどのような分解、イオン化、励起過程を経るかが異なる。これに関する研究の中で重要となる基礎データが、ガス分子の電子衝突による反応断面積である。対象となっているガスも、H2、O2、N2 といった基本的な二原子分子から、半導体加工で使われる CF4、CF3、CaF6（環状分子）、

\[
\begin{array}{|c|c|}
\hline
\text{gas} & \text{surf.} \\
\hline
\text{Si} & \text{Cl} x \\
\text{Metal (Al, Au etc.)} & \text{Cl} x \\
\hline
\end{array}
\]

表 1 エッチング工程において用いるガス種

Table 1. Gases used in etching processes.

分子がどのような分解、イオン化、励起過程を経るかが異なる。これに関する研究の中で重要となる基礎データが、ガス分子の電子衝突による反応断面積である。対象となっているガスも、H2、O2、N2 といった基本的な二原子分子から、半導体加工で使われる CF4、CF3、CaF6（環状分子）、

例えば CF3 は、運動量移行断面積や振動励起断面積（非弾性散乱断面積）が電子エネ
エネルギー分布が異なるので、Cl₂の解離度に違いが生じる。誘導結合プラズマ型（ICP）法とUHF法を比較した場合、UHF法によって生成されるプラズマでの電子エネルギー分布は低エネルギー側にシフトし、Cl₂の解離断面積のピークとするため、Cl₂の解離（Cl₂ → Cl + Cl）は指数関数的に減少する。

これを念頭に置いて図1を見ると、解離度の上昇と共にサイドエッティング量が増加することから、AlはClとの反応性がCl₂よりも高いことがわかる。本稿には示していないが、poly-シリコンのエッティングでも、ICP法とUHF法での塩素ガスの解離度に着目した実験から、Cl₂よりもClイオンの反応性は高いという結果が報告されている。

また近年の進展としては、金(Au)や白金(Pt)などをエッティングに用いない不揮発性材料に対する、パルス変調プラズマを用いたエッティング技術が開発されている。Cl₂による不揮発性材料のエッティング速度の傾向を調べると、連続放電ではパワーサイドエッティング量が増加するが、パルス変調プラズマではパワーサイドエッティング度が増加することが実験で確認されている。本稿では詳細に述べていないが、この傾向が見られるのは、パルス変調プラズマを用いて生成されるCl⁻により、不揮発性材料の表面と化学反応が増大したためと考えられている。これを活用することで、非経験的分子軌道計算によりCl⁻の効果の有無を評価、検証するという試みも行われている。

基板表面の制御のためにプラズマ中での解離過程、反応断面積といった情報を活用して研究開発が進められており、今後一層、分子レベルでの理解が進むものと思われる。

4. フルオロカーボンガスによるエッティング

シリコン酸化膜(SiO₂)のエッティングは、ULSI作成における重要な技術の一つである。これにはフルオロカーボン(C₃F₅)ガスプラズマが用いられる。このプロセスでは、Si酸化膜の高選択性を実現するために、フルオロカーボンポリマーを堆積させる過程とフルオロカーボンイオンを基板に送り、その衝撃によりSiO₂のSi−O結合を切断し、その酸素原子とポリマー中の炭素原子とが化学反応を起こし、CO(もしくはCO₂)を生成する過程とのバランスによって反応が進行ると考えられている。この反応機構では分解のうち、CF₂がポリマー生成の前駆体であり、またCF₅⁺がSiO₂膜の主たるエッチャントであると、これまでの研究から考えられてきた。図2はCF₅⁺の役割を示す図で一つである。このCF₅⁺イオンは、比較的イオン化基底(10.3eV)
図2 SiO\textsubscript{2}とSi\textsubscript{3}N\textsubscript{4}に対するCF\textsubscript{n}+ (n=1-3)のエッチング量

Fig 2. Etching Yield of CF\textsubscript{n}+ on SiO\textsubscript{2} and Si\textsubscript{3}N\textsubscript{4}.

が低いことから、CF\textsubscript{3}との電子衝突により生成されると考えられる。半導体プロセスで必要なSi酸化膜の高選択性を実現するには、これら分解種の制御が必要となる。より効率的にラジカルやイオンを生成するために、ECRやICPといった高密度プラズマ源が用いられているが、低分子ではフルオロカーボンガスの分解が進みすぎ、CF\textsubscript{2}の堆積が抑制され、一方高分子では堆積が進んで所望の選択性を得ることができないという問題点がある。後者は、非弾性過程によるエネルギー失じにより高エネルギー電子の量が抑えられ、イオン化が起こりにくく、プラズマ密度の上昇を得ることができず、ポリマー堆積がエッチング反応を上回るためであると考えられる。これを解決するために、希ガスによりフルオロカーボンガスを希釈する方法が提案されている。この方法は、希釈により電子エネルギー分布を変化させるもので、Ar希釈の場合にはフルオロカーボンガスからの解離過程とイオン化過程の制御を実現している。

5. 新しいガスセミストリーへの展開

最後にフルオロカーボンガスを利用したSi酸化膜エッチングにおける最近の動向を記す。フルオロカーボンガスによるエッチング過程の研究は、CF\textsubscript{3}やCF\textsubscript{4}などの既存ガスの分解過程を調べ、制御方法を検討するという方向で従来進められてきた。しかし、より微細な加工技術が必要とされる中、このアプローチによる制御法の確立には限界があり、プラズマ源とプラズマ条件に適合した、最適なガス分子を設計し、所望のラジカルやイオンを得るという試みがなされるようになった。一例を紹介する。CF\textsubscript{3}とCF\textsubscript{2}を選択的に生成かつ制御するために、CF\textsubscript{3}IとCF\textsubscript{4}の混合ガスを用いると、それぞれの分子の解離エネルギー

\[\text{CF}_3I + e^- \rightarrow \text{CF}_3 + I + e^- \quad \Delta H = 2.33 \text{eV} \]

\[\text{CF}_4 + e^- \rightarrow 2\text{CF}_2 + e^- \quad \Delta H = 3.05 \text{eV} \]

であり、UHFプラズマの場合は電子エネルギー分布関数のピーク位置が2.5eV近辺にあるため、CF\textsubscript{3}IからCF\textsubscript{3}を、CF\textsubscript{4}からCF\textsubscript{2}を効率良く生成することができると考えられる。

C-F結合の解離に要するエネルギは5.45eVであり解離しにくく、CF\textsubscript{3}IからのCF\textsubscript{3}の生成やCF\textsubscript{4}からのCF\textsubscript{2}の生成では解離エネルギーが4eV以上であり、これらのガスではCF\textsubscript{2}の効率的な生成は期待できないからである。CF\textsubscript{3}IとCF\textsubscript{4}の混合ガスでは、両者のガス流量比を変えることでCF\textsubscript{3}とCF\textsubscript{2}の密度比を自由に変えることができ、さらにガス流量比とフルオロカーボン膜厚さ速度の関係を確認することができる。図3にエッチング速度の形状依存性を示した。

図3 CF\textsubscript{3}I/CF\textsubscript{4}とCF\textsubscript{3}I/Arを使った場合におけるエッチング速度の形状依存性

Fig 3. Pattern dependence of the etching rate using CF\textsubscript{3}I/CF\textsubscript{4} and CF\textsubscript{3}I/Ar plasma.

CF\textsubscript{3}I/CF\textsubscript{4}混合ガスでは形状によらずほぼ一定のエッチング速度が得られているが、CF\textsubscript{3}I/Ar混合ガスでは形状が挙くなる速度が落ちていく。これは、CF\textsubscript{3}Iでは電子の非弾性衝突による電子のエネルギーフレクチのためにプラズマ密度が低く抑えられ、CF\textsubscript{3}IだけでなくCF\textsubscript{4}のような高分子に
6. まとめ

低温プラズマによる半導体加工でのプラズマ表面反応の研究動向と、それに基づく技術を解説した。プラズマ源とプラズマ条件によって電子エネルギーや分布に大きな違いがあるため、プラズマ制御を行うには、反応断面積と解離過程の知見が重要となっている。本稿では、エッチングによる反応生成物やエッチング形状シミュレーションなどの話題については割愛した。これらについては、電気学会技術報告・第 853 号「低エネルギー電子・イオンダイナミックスとシミュレーション技法」と参照されたい。

文献
(1) 電気学会技術報告 第 691 号 『低エネルギー電子・イオンダイナミックスとシミュレーション技法』(1998).
(3) 電気学会技術報告 第 481 号 『プラズママリアクターにおける活性種の反応過程とその応用』(1994).
(4) 寒川誠二：「プラズマエッチングの基礎」、第一回プラズマエレクトロニクスサマースクール、p31-p43 (1994).

（平成14年1月24日受付）

津田　健一郎（正会員）1995年3月総合研究大学院大学物質科学研究所博士課程修了。同年4月日本電気（株）入社。基礎研究所にて、半導体プロセス、タンパク質分子などの非経験分子軌道法による分子シミュレーションに関する研究に従事。理博。

数見　秀之（正会員）1988年3月京都大学工学研究科原子核工学専攻修士課程修了。同年4月（株）日立製作所入社。エネルギー研究所にて、プラズマシミュレーションの研究に取組み、レーザー同位体分離、プラズマ装置の開発を行う。現在、同社日立研究所にてエッチング装置の開発に従事。

中野　俊樹（正会員）昭和61年3月早稲田大学大学院理工学研究科博士前期課程修了。昭和62年9月同大学院博士後期課程中退。同年10月防衛大学校工学部宇宙工学教室助手。現在、防衛大学校電気情報学群電気電子工学科教授。低気圧、高密度プラズマの診断・計測に関する研究に従事。工博。

寒川　誠二（正会員）1981年慶應義塾大学工学部計算工学科卒。同年日本電気㈱入社。1992年工学博士（慶應義塾）。2000年7月より東北大学教授。革新的プラズマプロセスおよび原子操作プロセスの研究に従事。現在、応用物理学会プラズマエレクトロニクス分科会副幹事長。米国真空学会プログラム委員等を務める。1997年International Micro and nano-Technology Conference Outstanding Paper Award、2001年応用物理学会論文賞受賞。