数値解析によるウィークリンクを含むバルク高温超電導体の
磁気遮蔽特性評価

正員 福岡克弘（能関総合大） 正員 橋本光男（能関総合大）
非会員 富田優（鉄道総研） 正員 村上雅人（超電導工学研）

Evaluation of magnetic shielding characteristics of bulk high-\(T_c \) superconductor
including weak links with numerical analysis
Katsuhiro Fukuoaka, Member, Mitsuo Hashimoto, Member (Polytechnic University)
Masaru Tomita, Non-member (Railway Technical Research Institute JRI)
Masato Murakami, Member (Superconductivity Research Laboratory)

High-\(T_c \) superconductors (HTS), which have a characteristic of the critical current density over \(3 \times 10^4 \) A/cm\(^2\) in liquid nitrogen temperature (77 K) and 1 T, can be produced. Thus, they are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and etc.. Since the HTS characteristics are not homogeneous in some specimens due to grain boundaries and cracks, the distribution of magnetic characteristics should be assessed. Thus, we have measured the distribution of the magnetic flux density on the surface of the HTS using a hall element, and have evaluated its magnetic characteristics. The measurement of magnetic characteristics using a hall element is difficult for measuring the distribution of the magnetic flux density on the actual surface and the inside of the HTS sample. In this research, we examined a quantitative evaluation of the magnetic shielding characteristics of the HTS including weak links under the static magnetic field with the three-dimensional finite element method analysis.

キーワード：YBCO 超電導体、磁気特性、有限要素法、磁界解析、ウィークリンク
Keywords: YBCO bulk superconductor, magnetic characteristics, finite element method, magnetic field analysis, weak link

1. はじめに

QMG(Quench and Melt Growth)法や MPMG(Melt Powder Melt Growth)法などによる半凝縮法により作製されたイットリウム系超電導体(YBCO)は、液体窒素温度(77K), 1Tにおいて\(3 \times 10^4 \)A/cm\(^2\)を越えるような高臨界電流密度の特性を持ち(1)。したがって、高温超電導体は磁気シールドや磁気磁気保存および磁気荷電用ライオンホール等の産業分野への応用が検討されている(2)。このような応用には、臨界電流密度が高い、特性が均一でより大きな単一ドメイン(擬似単結晶)の試料の開発が必要である。しかし、高温超電導体は必ずしも均一な材料ではなく、材料内での不均等構造やクラック等のウィークリンクを含んでいる場合もある。このため、高温超電導体の磁気特性に対する非破壊的な評価手法の開発が重要となる。

これまで我々は、ホール素子を用いて高温超電導体表面の磁束密度分布を可視化計測し、高温超電導体の静磁界の中の磁気特性分布を評価してきた(3)(4)。これにより、ウィークリンクが含まれる超電導試料全体のマクロ的な磁気特性分布を評価することができた。しかし、超電導試料とホール素子の間には有限な空間が存在し、計測により実際の試料表面や試料内部の磁気特性分布を評価することは難しい。

そこで本研究では、実験により測定した磁束密度分布より超電導体の各点における臨界電流密度を求める、Bean モデルに基づいた三次元有限要素法解析を行い、静磁界下における高温超電導体の磁気遮蔽特性を評価する(5)ことを検討する。ウィークリンクのない均一な高温超電導体の静磁界および交流磁界応答の数値解析による評価に関しては、これまでに多くの研究がなされている(6)(7)。本研究では、ウィークリンクを含む不均一な高温超電導体のマクロ的な磁気遮蔽特性の評価を検討する。

2. 磁束密度分布計測と電流密度の絶対値分布

高温超電導体に静磁界を印加したときの磁束密度分布を、低温用ホール素子(HHP-VA: AREPOC)により測定し、磁束密度をパラメータにして可視化表示した結果を図 1 に示
Fig.1. Distributions of magnetic flux density.

Fig.2. Distributions of current density.

Fig.3. Distribution of critical current density in each point of specimen.

$J = \frac{1}{\mu_0} \text{rot} \mathbf{B} = \frac{1}{\mu_0} \left(\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial x} \right)$ \hspace{1cm} (2)

$|J| = \frac{1}{\mu_0} \sqrt{\left(\frac{\partial B_y}{\partial y} \right)^2 + \left(\frac{\partial B_z}{\partial x} \right)^2}$ \hspace{1cm} (3)

この関係を用いて、図1(a)〜(e)の磁束密度分布から超電導体に流れるマクロ的な電流密度を求める。図2に試料各点における電流密度の絶対値の分布を、励磁電流をパラメータにして可視化表示する。図3には電流密度の最大値を示す。図2(a)の励磁電流1.0Aでは、試料外周に沿って高い電流密度が観測される。励磁電流が高くなるにつれて、試料右
上のウィークリンク部周辺の電流密度が高くなる。図 2 (b) の励磁電流 3.0A では、ウィークリンクに沿って流れる電流密度よりも試料の外周を流れ電流密度の方が高いため、図 2 (c) の励磁電流 7.2A では、ウィークリンクに沿って流れる電流密度の方が高くなる。図 2 (a)〜(c) の三つの励磁電流における電流密度分布から、各点における電流密度の最大値を抽出する。また、励磁電流 7.2A においても磁束密度を中心に測定しがたいため（図 1 (c)参照）、中心部分の電流密度はほぼゼロと計算される。そこで、中心部分の電流密度を試料中の最大電流密度 3.01×10^4A/cm^2 に置き換える図 3 に示す。この電流密度分布を試料各点の臨界電流密度とした数値解析を行い、高温超電導体のマクロ的な磁気遮蔽特性を評価する。

3. 解析手法

高温超電導体に静磁界を印加すると、試料には遮蔽電流が流れ遮蔽は遮蔽される。しかし、磁束密度 B は遮蔽電流密度 J に比例した勾配（rot B=µdJ/dy）で試料の外周から侵入する。つまり、高温超電導体の実験的な磁場侵入は、臨界電流密度と印加される外部磁界によって決定される。一方、導体に通過的に変化する磁界を印加すると、試料は導体に流れる遮蔽電流を考え、一般的な非定常交流電界解析を行うことにより磁気遮蔽特性を評価する。電磁界解析手法は A・φ法を用いる。A・φ法による支配方程式は次のように書ける。

\[\nabla^2 A = \mu_0 \sigma \left(\frac{\partial A}{\partial t} + \text{grad} \phi \right) \]

ただし、A は磁気ベクトルポテンシャル、\(\mu_0 \) は真空の透磁率(4π×10^{-7})、σ は導電率、\(\phi \) はスカラポテンシャルである。上式と電流連続の条件を表す divJ = 0 に対応する

\[\text{div} \left(\frac{\partial A}{\partial t} \text{grad} \phi \right) = 0 \]

を連立させて計算を行う。高温超電導体の導電率 \(\sigma_n \) の決定は以下の図 Bean モデルを用いる[10,11]。

\[\sigma_n = \frac{J}{E_n} \quad (J > J_c) \]

\[\sigma_n = \sigma_{m} \quad (J_c \leq J) \]

ここで、\(J, J_c, \sigma_{m} \) および \(E_n \) はそれぞれ各要素の電流密度、臨界電流密度、初期導電率および電界を示す。初期導電率 \(\sigma_{m} \) は 1.43×10^5S/m として取り扱う。この具体的な非線形反復計算法には、ニュートンラプソン法を適用する。

交流電磁界解析における表面深さ δ は導体の導電率を \(\sigma \)、透過率を \(\mu \)、周波数を \(\nu \) とすれば

\[\delta = \frac{1}{\sqrt{\nu \mu \sigma \pi}} \]

で示される。上式の周波数 \(\nu \) をパラメータにすることにより、実験における実用的な磁界侵入長さと等しくなるような表面深さ \(\delta \) を决定し数値解析を行う。数値解析は、コイルに印加する励磁電流を半波の正弦波として通過応答解析を行い、励磁電流のピーク値を実験における直流励磁電流と等しく設定する。出力する電流密度分布および磁束密度分布は、励磁電流のピーク値での解析結果である。解析モデルは、「臨界電流密度を一定としたモデル」と、「試料の一部にウィークリンクが存在するモデル」の二つの解析を検討する。以下にそれぞれのモデルを示す。

＜3・1＞ 臨界電流密度を一定としたモデル

1) 高クオリティ素子の臨界電流密度を実験から求めた 3.01×10^4A/cm^2 とする。

2) Bean モデルにより決定する導電率 \(\sigma_{m} \) を用いて磁束密度分布を計算し、実験から求めた高温超電導体の実験的な磁場及び電流分布を比較し、数値解析での表面深さ \(\delta \) が等しくなるように周波数を決定する。

3) 励磁電流を変更し磁場侵入長さと表皮深さ \(\delta \) の比較を行い臨界電流密度を再検討する。

4) 臨界電流密度を決定する。

入力パラメータおよび出力パラメータを以下に示す。

○ 入力パラメータ

- 周波数: 25〜200Hz
- 臨界電流密度 \(\chi \): 3×10^3〜1×10^4A/cm^2
- 初期導電率 \(\sigma_{m} \): 1.43×10^5S/m
- 比透磁率 \(\mu \): 1

○ 出力パラメータ

- 磁束密度
- 電流密度

＜3・2＞ ウィークリンクが存在するモデル

1) 臨界電流密度を一定としたモデルの一部に、実験から求めた臨界電流密度の低いウィークリンク部の要素を設ける。

2) 臨界電流密度を一定としたモデルと同様に Bean モデルに基づき磁束密度分布を計算する。ただし、周波数および健全な部分の臨界電流密度に基づき電流密度を一定としたモデルで求めたものを採用する。

3) 実験結果との比較により、解析手法の妥当性の確認と磁気特性の評価を行う。

入力パラメータおよび出力パラメータを以下に示す。

○ 入力パラメータ

- 周波数: 80Hz
- 高クオリティ素子の \(\chi \): 6×10^4A/cm^2
図4 障界電流密度が一定のモデル
Fig.4. Model of constant critical current density.

図5 ウィークリンクが存在するモデル
Fig.5. Model of including weak links in a part of specimen.

・ウィークリンク要素の d: $8 \times 10^9 \text{A/cm}^2$
・初期導電率 σ_{ini}: $1.43 \times 10^{10} \text{S/m}$
・比透磁率 μ_r: 1
○ 出力パラメータ
 ・磁束密度
 ・電流密度

<3.2> モデルの要因分割
両モデル共に、超電導試料の1/4モデルを解析する。図4に「障界電流密度が一定としたモデル」、図5に「ウィークリンクが存在するモデル」の超電導体と励磁コイルの形状および要素分割図を示す。両モデル共に、全要素数は70,422、節点数は75,900である。なお、超電導体および励磁コイルの寸法、超電導体と励磁コイルの配置はすべて実験と等しく設定する。

4. 解析結果

<4.1> 障界電流密度を一定としたモデル
図6に、励磁電流1.0Aにおける超電導試料外周から中心までの磁束密度の線分布の実験結果と、周波数をパラメータにした解析結果をまとめて示す。各要素の障界電流密度は、実験より求めた $3.01 \times 10^9 \text{A/cm}^2$ を用いる。ここで、実験における磁束密度の測定では、ホール素子と超電導体とのリストオフは0.5mmである。さらに、ホール素子のセンサー部分は厚み0.5mmの樹脂でカバーされているため、計測される磁束密度は超電導試料上1mmでの値となる。よって、数値解析においても実験と条件を一致させるため、超電導試料上1mmでの磁束密度をプロットする。この図より、周波数80Hzにおける解析結果が実験結果の試料外周から中心への磁束密度の傾きに一致することが判る。つまり、実験から求めた高温超電導体の実効的な磁場侵入長&と、数値解析により求めた周波数80Hzにおける帯深さが一致する。図7に周波数80Hz、励磁電流1.0Aで解析した試料に流れる電流密度分布を示す。最大電流密度は1.49×10^9A/cm^2であり、図2(a)に示す実験から求めた磁束密度1.0Aでの最大電流密度3.87×10^9A/cm^2よりも高い。実験から求めた電流密度は、超電導試料上1mmでの磁束密度分布で試料に対しほぼ成分の磁束密度のみで計算しているため、実験の値よりも低く見積もり解析結果よりも低くなる。

図8に示すのは、励磁電流7.2Aでの超電導試料外周から中心までの磁束密度の線分布の実験結果と、解析結果(周波数80Hz)を比較した図である。この図より、解析結果と解析結果の試料外周から中心への磁束密度の傾きは異なり、解析結果のほうが緩やかな傾きになることが判る。ここで、各要素の障界電流密度は実験から求めた $3.01 \times 10^9 \text{A/cm}^2$ と
図8 昇磁電流7.2Aにおける磁束密度の線分布
Fig.8. Line distributions of magnetic flux density when exciting current is 7.2 A.

図9 臨界電流密度をパラメータにした磁束密度の線分布
Fig.9. Line distributions of magnetic flux density with various critical current densities.

設定されている。上述したように、この臨界電流密度は超電導材料上1mmで、試料に対し垂直成分の磁束密度分布より求めたために、実験の試料が持つ臨界電流密度よりも低く見積もられる。よって、実験から求めた臨界電流密度をそのまま解析に用いると、実際に試料に流れる電流密度より小さく設定されることになる。そのため、実験結果より多くの磁束が試料中心側に侵入する。そこで、各要素に設定する臨界電流密度をパラメータにした磁束密度の線分布の解析結果を、実験結果とまとめて図9に示す。この図より、臨界電流密度を実験結果から求めた値の2倍にした6.00×10^4A/cm^2のときに実験結果とよく一致する。以降、臨界電流密度に6.00×10^4A/cm^2を用いて解析を行う。ここで、実験結果の試料中心部の磁束密度が高くなっているのは、ウィークリングの影響である（図1(a)参照）。

図10に臨界電流密度6.00×10^4A/cm^2、昇磁電流7.2Aとして解析した電流密度分布と磁束密度分布を示す。磁束密度分布は、実験と比較するため試料上1mmでの分布を表示する。図10(a)の電流密度分布より、試料の外周部に外部磁界を遮蔽する方向に電流が流れ、またその電流密度値はBeanモデルにより導電率が操作され、磁束密度密度6.00×10^4A/cm^2を越えないことが判る。図10(b)の磁束密度分布に着目すると、Beanモデルに基づく傾きで試料外周部からの磁束侵入の影響を計算できることが確認される。

図11に示すのは、昇磁電流7.2Aにおいて周波数をパラメータとして解析した、試料外周から中心までの各要素における遮蔽電流密度の線分布である。試料外周部の臨界電流密度Jaを超える要素に対するBeanモデルにより導電率が調整され、試料に流れる遮蔽電流=Jaとなる。しかし、それよりも試料の内側の要素では、表面効果に基づき指数関数的に電流密度が減衰する。ここで、本来のBeanモデル

図11 周波数をパラメータにした電流密度の線分布（昇磁電流：7.2A）
Fig.11. Line distributions of current density with various frequencies. (Exciting current: 7.2 A)
図12 外部磁界をパラメータにした電流密度の線分布
Fig.12. Line distributions of current density with various external magnetic field.

図13 周波数をパラメータにした電流密度の線分布
(励磁電流：1.0A)
Fig.13. Line distributions of current density with various frequencies. (Exciting current: 1.0 A)

では試料中に流れる電流は、\(\psi \) または 0 かの何れかであり、中間値は持たない。しかし、試料中に流れる電流が \(\psi \) か 0 の何れかとして解析する場合、\(\psi \) から 0 に変移する領域の要素を十分小さく分割しなければ、個々の外部磁界の流いに対する超電導体の応答を正確に解析することができない。図12に示すのは、励磁電流を 7.1Aから 7.5A とし外部磁界を変化させ解析した電流密度の線分布である。周波数パラメータは 80Hz とする。本手法では、試料に流れる電流が \(\psi \) か 0 に変移する領域で、電流密度の減衰に表皮効果に基づき傾きを持たせているため、その傾きの角度で個々の外部磁界の変に対する超電導体の応答を表現できる。よって、ある程度高い要素分割でも実効的な解析結果が得られ、それより計算時間を短縮している。また、図13に示すような超電導体に加える外部磁界が小さい場合、遮蔽電流の流れる領域が狭くなり要素分割の大きさとの兼ね合いから、試料の外周部の要素においても \(\psi \) に達しない場合がある。この場合でも遮蔽電流分布は表皮効果で決定され、この状態においても実効的な解析結果が得られる。

＜4・2＞ウィークリンクが存在するモデル

図5に示した要素分割図の試料の一部に設ける境界電流密度の低い領域の電流密度は、実験より求めたウィークリンク部の平均値 8.00×10^{-8}A/cm² を用いる。このウィークリンクが存在するモデルの電流密度分布と磁束密度分布を、励磁電流をパラメータにした数値解析する。図13に電流密度分布をまとめ示す。図14(a)の励磁電流 1.0A では試料に流れる遮蔽電流が少なくて、ウィークリンク部においても試料中心部に流れる電流は少ない。励磁電流を 3.0A、7.2A に上げることにより、ウィークリンク部において試料中心部に流れる電流が多くなり、ウィークリンクに沿って流れる電流が増える。図14(c)の励磁電流 7.2A では、ウィークリンク部で試料外周に流れる電流の割合は少なくなわり、大部分の電流がウィークリンクに沿って流れることになる。

このときの磁束密度分布を図15に示す。この磁束密度分布は試料上 1mm での分布を表示する。図15(a)の励磁電流
1.0A では、電流は試料外周に沿って流れるためウィーキングにも磁束は侵入しない。励磁電流を 3.0A、7.2A に上げると、所がってウィーキングに磁束が侵入しその領域は拡がる。この図 15 の磁束密度分布の解析結果と図 1 の実験結果を比較すると、よく一致していることが判る。ここで、解析精度を確認するためウィーキング部における磁束密度の線分布の解析結果と実験結果と比較する。図 16 (a)に示す測定ラインにおける磁束密度の線分布を図 16 (b) に示す。これらの磁束密度の線分布は、励磁電流 7.2A における試料上 1mm での分布を示す。ウィーキング周辺部における解析結果と実験結果の磁束密度の誤差は 4% 未満であり、解析において主に影響を及ぼすウィーキング部の形状および臨界電流密度の妥当性が確認された。

図 17 に励磁電流 7.2A での試料表面（試料上 0mm）の磁束密度分布を示す。図 15 (c)に示した試料表面（試料上 1mm）での磁束密度分布と比較すると、試料上 1mm での磁束密度分布では磁束が拡がり平均化され、実験の試料表面での磁束密度分布とは異なることが判る。図 17 では、ウィーキング部と他の健全な超電導体との磁束密度の差は大きく、ウィーキング部が鮮明に判明できる。したがって本解析手法により数値解析を行うことで、実験だけでは評価することが難しい実際の試料表面の磁束密度分布を評価することができ確認された。同様に、本解析手法により試料内部の磁束密度分布についても評価できる。

5. まとめ

ホール素子により測定した磁束密度分布より、超電導体の静磁界中の磁気遮蔽特性を、一般的な電磁界解析法を当てはめる簡易的な数値解析により評価した。実験結果との比較から微細な磁気遮蔽特性の解析手法としての妥当性を確認した。

(1) ウィーキングを含む高温超電導体の磁気遮蔽特性を、一般的な電磁界解析法を当てはめる簡易的な数値解析により評価した。実験結果との比較から微細な磁気遮蔽特性の解析手法としての妥当性を確認した。

(2) ウィーキングを含む高温超電導体の磁気遮蔽特性をモデル化し、数値解析により実験だけでは評価することが難しい試料表面における内部の磁束密度分布を評価することができるが確認された。

今回本研究に用いた超電導試料は、試料上の一箇所に大きなウィーキングを持つ単一のウィーキングを持つ超電導体（試料）。本解析手法は、さらに複雑なウィーキング形状を持つ多結晶超電導体や、複数の超電導体の組み合わせによる磁気遮蔽特性評価にも適用が期待できる。

(平成 13 年 5月 31日受付、平成 14年3月6日再受付)

参考文献

(1) M.Murakami et al., "Critical currents and flux creep in melt processed high Tc superconductors", Cryogenics, 32, 5, p.931 (1992)
(2) 村上雅人,「超電導体の電磁力を利用した応用」, 電磁力関連のダイナミックスシンポジウム, p.9 (1993)
(3) 橋本光男, 福岡充弘,「高温超電導体の可視化計測による磁化特性評価」, 電気学会マグネットクックス研究会, 資料番号(MAG-93-166), p.7 (1993)
富田 優
（非会員）1965 年 3 月 10 日生まれ。93
年 3 月九州工業大学大学院情報工学研究
科修士課程修了。同年（財）鉄道総合技
術研究所入所。98-02 年超電導工学研究
所勤務（02 年より嘱託研究員）。現在、
（財）鉄道総合技術研究所浮上式鉄道開
発本部において、超電導応用研究に従事。

村上 雅人
（正員）1955 年 2 月 13 日生まれ。1984
年 3 月東京大学大学院金属材料専攻博士
課程修了。同年 4 月新日本製鉄入社。93
年 7 月より超電導工学研究所研究部長。
95-97 年名古屋大学客員教授。98-02 年
岩手大学客員教授。現在は東京商船大学
の客員教授を兼務。現在に至る。工学博
士。主として高温超電導材料開発に従事。

福岡 克弘
（正員）1971 年 12 月 23 日生まれ。94
年 3 月職業能力開発大学校電気工学科卒
業。96 年 3 月同大学校研究課程工学研究
科電気情報専攻修士。同年 4 月東京職業
能力開発短期大学校電気技術科講師。98
年職業能力開発短期大学校電気工学科助
手、2002 年同講師、現在に至る。工学博
士。高温超電導体の磁気特性評価に関する
研究に従事。

橋本 光男
（正員）1950 年 12 月 11 日生まれ。72
年茨城大学工業短期大学部電気工学科卒
業。76 年同電子工学科卒業。東京大学工
学部助手を経て 90 年職業能力開発短期大
学校電気工学科助教授。95 年同教授、現
在に至る。工学博士。電磁現象を応用
した計測診断に関する研究に従事。