J-STAGE トップ  >  資料トップ  > 書誌事項

Vol. 129 (2009) No. 4 P 269-274




Stable electrolyte cathode atmospheric dc glow microdischarges were generated by using a miniature helium gas flow from a nozzle electrode in air. We developed two schemes to control the temporal evolution of the discharge and the interaction between the discharge column and the ambient air. The vaporization of electrolyte solutions takes place and affects the discharge characteristics. It takes time from the start of the discharge. Therefore the discharge was controlled by applying pulse modulated dc voltages. If the voltage was dropped down to zero before the vaporization, the gas discharge developed without the ionization of the components of solution. The helium gas discharge without air developed when the nozzle electrode was placed in a glass capillary. This was confirmed by examining the change in pH of the solution, which usually decreased owing to the generation of nitrogen oxides in the discharge in air.

Copyright © 電気学会 2009