2024 年 144 巻 4 号 p. 132-138
In order to mitigate weather disasters caused by heavy precipitations, it is important to observe 3-dimensional precipitation structure in a storm with high temporal resolution. In recent years, the development of phased array weather radar is being promoted for high-speed precipitation observations. We propose an algorithm for predicting heavy rainfall using machine learning for the novel phased array weather radar (Multi-Parameter Phased Array Weather Radar: MP-PAWR) observation data. The algorithm predicts localized convective rainfall by extracting the vertical structure of storms observed by MP-PAWR for each precipitation cell. The proposed method with the combination of convolutional neural networks and long short-term memory networks were applied to various observation data from MP-PAWR with high spatial and temporal resolution to predict heavy rainfalls a few minutes later. The results showed that the use of specific differential phase data gave particularly accurate predictions for heavy rainfall compared to radar reflectivity factor and differential reflectivity data.
J-STAGEがリニューアルされました! https://www.jstage.jst.go.jp/browse/-char/ja/