独立形PM誘導発電機の特性算定法

正員 深見 正* 学生員 清水 文吾*
正員 花岡 良一* 正員 高田 新三*
正員 宮本 紀男*

Performance Prediction of a Stand-Alone Permanent-Magnet Induction Generator

Tadashi Fukami*, Member, Bungo Shimizu*, Student Member, Ryoichi Hanaoaka*, Member, Shinzo Takata*, Member, Toshio Miyamoto*, Member

A permanent-magnet induction generator (PMIG) is a special induction machine self-excited from the inside of the squirrel-cage rotor by a permanent-magnet (PM) rotor. The PMIG can be made to operate as a stand-alone generator when the squirrel-cage rotor is driven by an external prime mover. Moreover, if the capacitors are connected across the stator terminals, adjusting their values can control the output voltage. This paper presents a method for predicting the steady-state performance of such a stand-alone PMIG theoretically. By introducing the per-unit system, a nonlinear equivalent circuit, which can include the variation of the circuit parameters, is derived. Based on this equivalent circuit, the steady-state performance is theoretically calculated, and its validity is confirmed through experiments.

キーワード：誘導発電機，かご形回転子，永久磁石励磁，自己励磁，独立形発電システム

Keywords: induction generator, squirrel-cage rotor, permanent-magnet excitation, self-excitation, stand-alone generation system

1. まえがき

誘導モータを高性能化するため，かご形回転子の内側から永久磁石回転子（PM 回転子）で自己励磁する特殊誘導モータ③(④)が検討されている。この誘導モータは，励磁源（すなわち，PM 回転子）を内蔵するため，従来機に比べて励磁電流の減少と効率・効率の改善が期待できる⑤④。

しかし，その反面，PM 回転子に起因して商用周波数の交流電源から自己始動できない。このため，インパータ駆動が前提となり，PM 同期モータなどの存在を考えると，モータとしての利用は不利である。

これに対し筆者らは，上記誘導モータを発電機として利用することを提案し，その発電性能をより明らかに把握するため，モールド機を試作するとともに理論の開発に取り組んできた⑧。発電機として利用すれば，かご形回転子を外力で駆動するので，モーターのような始動の問題は生じない。

以下，発電機として動作する上記誘導モータを「PM誘導発電機（PMIG）」と呼ぶことにする。

PMIG の運転方式は，一定周波数の交流系統と接続し，励磁電流の供給を受けながら滝を負で回転させることにより発電する「連続形」と，固定子端子にコンデンサを接続し，これによる自己励磁⑥⑦と PM 回転子による内部励磁を併用して発電する「独立形」が考えられる。

通常，誘導発電機は動作の確実性を考え連続形で運転するが，PMIG はかご形回転子を回転発電し，電圧値が容易で，残留磁気欠損による発電不能も生じない。このため，独立形の発電システムとしても期待できる。また，同じ PM 回転子を有する PM 同期発電機と比較すると，コンデンサ容量を調整すれば電圧制御が容易に行え，一定速度で駆動する工事，レジャーや，被災用のポータブル電源などに有用と考えられる。

以上ののような背景のもと，前論文⑧では，駆動源（回転速度）が変動する風力・マイクロ水力発電への適用を目標に，連続形 PMIG について定常特性的算定法を明らかにした。本論文では，新たに定速駆動を前提とした独立形 PMIG の特性算定法を提案する。独立形 PMIG は連続形の場合と異なり，運転条件（同軸速度，負荷，コンデンサの容量）が変化すると出力電圧と発電周波数が大幅に変化する。このため，発電機の回路パラメーターがこれらとともに非線形的に

* 金沢工業大学 電気系
〒 921-8501 石川県石川郡野々市町幾谷丘 7-1
Division of Electrical Engineering, Kanazawa Institute of Technology
7-1, Ohtigaoka, Nonolchi, Ishikawa 921-8501
2. 試作 PMIG の構造

図 1 に、動作解析用に試作した PMIG の回転子構造を示す。試作機は、市販の二相かご形誘導モータ（三菱電機製、2.2kW、200V、60Hz、4極、SF-JRフレーム）を、固定子をそのまま、回転子構造だけを改造したものである。図のように、回転子は二つの部分、すなわち外側のかご形回転子と内側のPM回転子からなる。かご形回転子はシャフトに連結させるが、PM回転子は三重ベアリング構造によってシャフトと独立に回転する。仕様の詳細は、文献（5）を参照いただきたい。

3. 独立形 PMIG のシステム構成と発電原理

(3-1) システム構成
図 2 に、独立形 PMIG のシステム構成例を示す。PMIG は、従来の自励式誘導発電機と異なり内部に PM 回転子を持たず、かご形回転子を用いて発電する。このため、自己励磁用のコンデンサが必要なくても発電可能である。しかしながら、図 2 では出力電圧を調整するため、コンデンサ C を接続している。以下、このシステムを例に取り発電特性の算定法を示す。

(3-2) 発電原理
かご形回転子を外力により駆動すると、二次巻線が PM 磁束を切り、二次巻線で誘導電流が流れ、この誘導電流と PM 磁束の間でトルクを発生、PM 回転子はかご形回転子に引き張られって方向的に回転する。この結果、一次巻線に電圧が誘導され、コンデンサ C に充電電流が流れ、独立形 PMIG は、以上の電流による自己励磁（6）と PM 回転子による内部励磁を併用して出力电压 V_L が得られる。C の値を変えれば、PM 磁束による一次巻線の誘導電圧以上で、V_L の調節が可能である。

発電中、固定子の回転磁界はかご形回転子より若干遅い速度で、すなわち発電逆転する。負荷が増加すると回転磁界的遅れが増加するので、これに伴い発電周波数が変動する。このため、PM 回転子は固定子の回転磁界と常に同期して回転する。

4. 特性算定法

(4-1) 特性算定上の仮定
(1) PM 回転子はシャフトに連結されていないので、定常運転時、若干の摩擦を除けば無負荷（同期モーターにおける負荷角ゼロの状態に相当）で固定子の回転磁界と同期して回転する（15）（16）。このため、PM 磁束と固定子の回転磁界の磁気軸が一致しているものとする。

(2) PM 材料は保磁力が大きく、リコイル比磁通率は 1 に近いものとする。また、PM 回転子の外側にかご形回転子の鋼心部が存在するため、PM は外部磁
図 3 連系形 PMIG 一相分の等価回路
Fig.3. Per-phase equivalent circuit of a grid-connected PMIG.

（3）計算が煩雑になるので、無視する。
（4）空間高調波による影響は無視し、電圧・電流波形
は正弦波で時間高調波を含まないものとする。

（4-2）等価回路

（4-2-1）連系形 PMIG の等価回路 図 3 は、前論文（1）で導出した連系形 PMIG 一相分の等価回路を示す。図から明らかのように、PMIG の等価回路は、通常の誘導
機モデルの磁通回路に PM によるギャップ電圧 E_{g31} を直
列接続した形で与られる。

図中の記号は、以下の通りである。

L_i は一次側電流及び電流。I_m は磁束電流。i_f は二次
電流。E_{g12} と E_{g31} は一次側のギャップ電圧。r_{11} と r_{12} は一次及び二次の巻線抵抗及び傾斜リアクタンス。x_{m12} は二次側の巻線リアクタンス。s_{12} は固定子の回転磁界に対するかご形回転子の滑りであ
る。また、各記号に付けたドット（.）はフェーダー、ダッシュ（_）は一次巻線への換算値を示す。もし記号に（.）
がないとすれば大きさだけを表すものとする。

特性算定では、以下の点を考慮して計算する。

（1）前記仮定（1）により、E_{g12} と E_{g31} は同相となる。
（2）PMIG では、PM コンダクターが一次巻線により有効に降
等するよう、二次巻線を深みやタイプに設計する。
このため、s_{12} が変化すると、表皮効果の影響で r_{12}
x_{12} の値も変化する。そこで計算では、これを s_{12}
の関数として記述する。

（3）x_{11} と x_{12} は本質的に分離できないので、近似的に
$x_{11} = x_{12}$ と計算する。

（4-2-2）独立形 PMIG の等価回路 独立形 PMIG の特性算定では、負荷変化に伴う周波数変動を考慮する必
要がある。そこで本論文では、図 3 の等価回路に単位法（1）を
導入し、定格周波数における回路パラメータから周波数
変動を容易に考慮できる独立形 PMIG の等価回路を導出
する。以後、E_{g12}、E_{g31}、x_{m12} は、測定ならびに解析の容
易さを考えて、定格周波数 f_R、定格回転速度 N_R における
値とする。

ここで、単位法で表した発電周波数を F、回転速度を ν
とすると、これらは次式で表現される（1）。

$$ F = \frac{f}{f_R} \quad (1) $$
$$ \nu = \frac{N}{N_R} \quad (2) $$

ただしそれf_R、N_R：運転中における実際の発電周波数
及び回転速度

また、この F と ν を用いて s_{12} を表すと、

$$ s_{12} = \frac{F - \nu}{F} \quad (3) $$
となる。

独立形 PMIG の等価回路は、図 3 において、電源 V_i を負
荷とコンデンサに変更し、周波数に関係する回路パラメ
タを (2)～(3) 式によって関係付ければ容易に求められる。
すなわち、図 3 の x_{11} と x_{12}、x_{m12}、E_{g12}、E_{g31} は、いずれ
も発電周波数 f に比例するので F 倍する。また、コンデン
サ C のリアクタンスは、定格周波数 f_R での値を X_C
とすれば、f に反比例するので $1/F$ 倍する。したがって、三相
平衡負荷で一相当たる抵抗を R_L と考えると、単位法で
表した独立形 PMIG 一相分の等価回路は図 4(a) となる。

しかし、この等価回路のままでは発電機の磁化特性（x_{m12}
と E_{g12} の関係）に F が入る、後の計算処理が煩雑になる。
そこで、図 (a) における各電流を変えないように、抵抗、
リアクタンス、電圧をそれぞれ F で割る。これより、最
終的な等価回路として図 4(b) が得られる。
（4・3）発電特性の算定法
図4(b)の等価回路において, \(r_1, E_{g12} \) は一定であり, 抵抗試験及び同期速度試験(5)により求められる既知の定数である。したがって, 運転条件（回転速度, 負荷, コンデンサ）によって非線形的に変化する未知の回路パラメータは, \(E_{g12}, x_{m12}, F, r_2', x_{12} = x_{11} \) である。これらのうち \(r_2 \) と \(x_{12} \) は, 電機の磁化特性によって決定され, 特性算定では \(x_{m12} = E_{g12} \) の関数とし, ときに記述する。また, \(r_2' \) と \(x_{12} \) は, \(s_{12} \) によって変化するので \(F \) の関数で定式化する。このようにすれば, 未知の回路パラメータを全て \(E_{g12} \) と \(F \) の関数として表現できる。したがって, 特性算定では, まず \(E_{g12} \) と \(F \) から求め, その後, \(x_{m12}, r_2', x_{12} = x_{11} \) を順次求める。

(4・3・1) ギャップ電圧 \(E_{g12} \) と単位電流表した発電周波数 \(F \) の算定
いま, \(E_{g12} \) と \(x_{m12} \) をジェーゼの基準に選び, 図4(b)の節点aにキルヒホッフの電流則を適用するところ, 次式が得られる。

\[
\sum i_a = \left(\frac{1}{Z_a} + \frac{1}{Z_b} \right) (E_{g12} + E_{g31}) + \frac{1}{jx_{m12}} E_{g12} = 0 \quad \cdots (4)
\]

ただし,

\[
\dot{Z}_a = \frac{r_1}{F} + jx_{11} - \frac{R_L X_C}{(R_L F - jX_C) F} \quad \dot{Z}_b = jx_{12} + \frac{r_2'}{F - \nu} \quad \cdots (5)
\]

(4) 式の \(r_2' \), \(x_{12} = x_{11} \) は, 拘束試験(5)から求めた \(s_{12} \) に対する変化を多項式で近似し, (3) 式を用いて次のように定式化する（後述の図5参照）。

\[
r_2' = a_1 [s_{12}]^n + a_2 [s_{12}]^{n-1} + \cdots + a_n [s_{12}] + a_{n+1}
\]

\[
= a_1 \left| \frac{F - \nu}{F} \right|^n + a_2 \left| \frac{F - \nu}{F} \right|^{n-1} + \cdots + a_n \left| \frac{F - \nu}{F} \right| + a_{n+1} \quad \cdots (6)
\]

こので, \(n \) 多項式の次数, \(a_1, a_2, \cdots, a_n, a_{n+1} \), \(b_1, b_2, \cdots, b_n, b_{n+1} \) 各次数における定数

また, \(x_{m12} \) は, 同期速度試験から得られた \(E_{g12} \) に対する変化を多項式で近似し, 次式で定式化する（後述の図6を参照）。

\[
x_{m12} = c_1 E_{g12} + c_2 E_{g12}^{n-1} + \cdots + c_n E_{g12} + c_{n+1} \quad \cdots (7)
\]

ここで, \(n \) 多項式の次数, \(c_1, c_2, \cdots, c_n, c_{n+1} \) 各次数における定数

(4) 式の右辺はゼロであるので, \(\sum i_a \) の実数部と虚数部もゼロでなければならない。したがって,

\[
\text{Real} \left \{ \sum i_a = 0 \right \}
\]

\[
\text{Imag} \left \{ \sum i_a = 0 \right \} \quad \cdots (8)
\]

となり, \(E_{g12} \) と \(F \) を未知数にした二つの非線形方程式が得られる。これらを解けば, 与えられた運転条件下における \(E_{g12} \) と \(F \) が求められる。

(4・3・2) 二次抵抗 \(r_2' \), 二次漏れリアクタンス \(x_{12} \), 動磁リアクタンス \(x_{m12} \) の推定
(8) 式から発電中の \(E_{g12} \) と \(F \) が求めば, 運転条件下の \(r_2', x_{12}, x_{m12} \) は(5)(7)式を再計算して同定できる。

(4・3・3) 特性算定式
運転条件下の非線形パラメータ \(E_{g12}, F, x_{m12}, r_2', x_{12} = x_{11} \) が求めれば, 図4(b)の等価回路から発電特性は以下ののように算定できる。

(1) 動磁電流

\[
\tilde{I}_m = \frac{E_{g12}}{j x_{m12}} \quad \cdots (9)
\]

(2) 二次電流

\[
\tilde{I}_2' = \frac{E_{g12} + E_{g31}}{r_2'} \quad \cdots (10)
\]

(3) 一次電流

\[
\tilde{I}_1 = \frac{E_{g12} + E_{g31}}{R_L X_C} \quad \cdots (11)
\]

(4) コンデンサ電流

\[
\tilde{I}_C = \frac{R_L F}{R_L F - jX_C} \tilde{I}_1 \quad \cdots (12)
\]

(5) 負荷電流

\[
\tilde{I}_L = \frac{-jX_C}{R_L F - jX_C} \tilde{I}_1 \quad \cdots (13)
\]

(6) 出力相電圧

\[
\tilde{V}_L = \tilde{I}_L R_L \quad \cdots (14)
\]

(7) 発電周波数

\[
f = F \quad \cdots (15)
\]

(8) 出力（三相分）

\[
\tilde{P}_3 = 3 \tilde{I}_L \tilde{I}_L R_L \quad \cdots (16)
\]

5. 計算及び実験結果

ここでは, 前章までに述べた特性算定法の妥当性を実験により検証する。実験では, 試作機をインバータ駆動のPM同期モータで駆動し, PMIGの定常特性を測定した。

(5・1) 等価回路定数及びパラメータ
計算に使用した試作PMIGの等価回路定数及び非線形パラメータの測定結果(5)を以下に示す。

(1) 定数

\[
r_1 = 0.618 \Omega, E_{g31} = 58.6 V (f = 60Hz)
\]

(2) 非線形パラメータ

図5及び図6に, \(s_{12} \) に対する \(r_2', x_{12} \) の変化, 及び \(E_{g12} \) に対する \(x_{m12} \) の変
Fig. 5. Variation of r'_2 and x'_{s2} versus s_{12}.

Fig. 6. Variation of x_{m12} versus E_{g12}.

Fig. 7. Variation of V_L versus ν.

Fig. 8. Variation of V_L versus C.

Fig. 9. Variation of V_L versus I_L.

近から C による自己誘導現象が現れ、一次巻線端子にコンデンサを接続することにより、その速度以上で V_L を昇圧できることも分かる。

図 8 に、無負荷の PMIG を定格速度 ($\nu = 1.0$, $N_B = 1800$ min$^{-1}$) で駆動したときの C に対する V_L の変化を示す。図のように C の値を変えれば、PM 磁束による一次巻線の誘導電圧以上で V_L が調節できる。

図 9 と図 11 に、PMIG を定格速度で駆動し、抵抗負荷に電力を供給したときの I_L に対する V_L, f, 及び P_o (三相分) の変化を示す。V_L は、I_L に対して良好な分巻特性を示すが、C の値を大きくすると飽和の影響で不足巻線特性となり、V_L の変動は大きくなる。f は、I_L に対して 3～4%程度変動するが、C の値を変えても大きな変化は見られない。また、P_o は、C により V_L が変化するので、C の値を大きくすれば増加する。今回検討した図 2 のシステムでは、V_L と f の変動を補償する機能はないので、実用の際は直列コンデンサー等による電圧・周波数の補償法を検討する必要がある。

以上、図 7 と図 11 に示すように計算値と実測値は比較的良く一致し、提案する特性算定法の妥当性が確認できる。
6. むすび

本論文では、独立型 PM 誘導発電機の定常特性の算定法を提案し、その妥当性を実験により確認した。

提案した特性算定法は、まず単位法で記述した発電機の等価回路から、与えられた運転条件（回転速度、負荷、コングデンサ）におけるギャップ電圧と発電機波数を求めめる。次いで、これらを基に流れて特性などから、励磁リアクタンス、二次電圧抵抗、二次電流リアクタンスを順次推定し、全体の等価回路パラメータを同定する。最後に、等価回路の回路計算で発電機特性を算定するものである。この方法によれば、運転条件の変化で定格周波数における回路パラメータから発電機の定常特性を容易に推定できる。

最後に、本研究は平成 14 年度科学研究費補助金（基盤研究（C））の援助を得て行われたことを付記し、感謝の意を表したい。

(平成 14 年 7 月 15 日受付、平成 15 年 1 月 20 日再受付)

文 献

(1) J.F.H. Douglas: "Characteristics of Induction Motors with

Permanent Magnet Excitation", Trans. AIEE (Power Apparatus and Systems), Vol.78, pp.231–235 (1959)

高田新三(正員) 1945年5月18日生。1975年3月明治大学大学院博士課程修了。1974年4月金沢工業大学講師、助教授を経て、1981年同大学教授、現在に至る。磁性材料、薄膜EL素子用材料、透明導電膜用材料など電気・電子材料の開発研究に従事。1997年7月～1998年6月米国ハワイ州立大学客員教授。工学博士。日本応用磁気学会、応用物理学会、電気化学学会、American Vacuum Society各会員。

宮本紀男(正員) 1937年2月11日生。1959年3月金沢大学工学部電気工学科卒業。同年4月三菱電機(株)入社、中央研究所に勤務。1980年同社伊丹製作所開発部、1985年同所デイスク開発プロジェクト部長、1987年産業システム研究所デイスク開発センター長、1990年金沢工業大学教授、2000年同大学教授部長、2002年退院部長、現在に至る。非線形パルスパワー工学、光学体積計測の研究に従事。工学博士(京大)。電気学会進歩賞、科学技術庁長官賞受賞。日本植物工場学会会員。