回転子バー形状が自体始動形永久磁石同期電動機特性に及ぼす影響

正員 栗原 和美* 非会員 小林 晃
非会員 安井 輝正*

Effect of Rotor-Bar Configuration on Starting and Load Performance Characteristics of Self-Starting Permanent Magnet Synchronous Motor

Kazumi Kurihara*, Member, Atsushi Kobayashi*, Non-member, Terumasa Yasui*, Non-member

This paper describes the effect of rotor-bar configuration on the starting and load performance characteristics of the self-starting permanent magnet synchronous motor. It becomes clear by using the time-stepped finite element technique that the rotor-bar configuration mainly affects the starting characteristics.

キーワード：永久磁石同期電動機, 回転子バー, 始動特性, 効率, 有限要素法

Keywords: permanent magnet synchronous motor, rotor bars, starting characteristics, efficiency, FEM

1. まえがき

近年、地球環境問題の観点から、商用電源で駆動する電動機の高効率化が強く求められている。高効率化対策の一つとして、回転子にかご形巻線をもつ永久磁石同期電動機が注目されている(1)。この種の電動機では永久磁石による磁束の通路に回転子バーが存在するため（図1参照）、バーの形状、特に、円周方向に沿ったバー幅が、バー周辺の鉄芯部の磁気飽和や永久磁石による有効磁束の大きさそのものに直接影響を与える。そのため、バー幅が始動トルク、定常負荷時の出力や効率に影響を及ぼす。ここでは、永久磁石同期電動機固有の効率という特長を損なうことなく、良好な始動特性を確保できる回転子バー形状の検討を行った。本研究では著者らが一部で開発した「有限要素法による永久磁石同期電動機の定常特性及び過渡特性の解析法」を用いてシミュレーションを行った。既に文献(2)における、本研究で使用した試験機の解析結果と実験結果の比較から、その解析法の妥当性を検証し、解析の際に必要な最適な時間刻み幅を決定しているので、ここでもその値を用いた。

2. 始動特性と定常負荷特性

図1に本解析に用いた試験機の回転子断面図（1極分）を示す。試験機は三相、4極機で固定子には定格出力600 W、ストロット数24の標準の誘導電動機のものを、永久磁石には最大エネルギー積300 kJ/m³のNd-Fe-B磁石を使用した。試験機は試作機であり、特に定格電圧は一定まっていないが、十分な始動トルクが得られる140 Vを定格電圧に選んだ(1)。

図2と表1に回転子バーの形状と寸法を示す。表1に示すように、バー幅W₁（エアギャップ側）とW₂（軸側）を変更した場合（バー幅dは7.5 mmで一定）の1種類（A機～C機）の電動機について、定常負荷特性及び始動特性

![図1 試験機の回転子断面図（1極分）](Fig.1. Cross section of experimental rotor.)

![図2 回転子バー形状](Fig.2. Rotor-bar configuration.)

* 茨城大学工学部 電気電子工学科
〒316-8511 日立市中城沢町 4-12-1
Dept. of Electrical and Electronic Eng., Ibaraki University
4-12-1, Nakaminato, Hitachi 316-8511

970 IEEJ Trans. IA, Vol.123, No.8, 2003
表 1 回転子バーの幅

<table>
<thead>
<tr>
<th>Machine</th>
<th>Width of a rotor bar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.5mm</td>
</tr>
<tr>
<td>B</td>
<td>4.0mm</td>
</tr>
<tr>
<td>C</td>
<td>3.0mm</td>
</tr>
</tbody>
</table>

図 3 時間すべり特性

Fig. 3. Computed slips versus time.

図 4 時間すべり特性

Fig. 4. Computed slips versus time.

解析を行った。なお、A 機は試験機である。表 1
からわかるように、ここではバーの断面積 S（断面積）を
一定とした。

図 3 と図 4 に逆子電圧が 140V の平衡三相電源で試験機
をラインスタートさせた場合の摩擦特性を示す。ここで、負
荷の慣性モーメント J_1 は 2.625 × 10^{-2} kg·m² で回転子単
体の慣性モーメント J_2 は約 17.6 倍である。また、負荷
トルクは零で、電入力位相角 ω_0 は図 3 では 0 rad、図 4
では π/2 rad の両端の場合である。

\[
\nu_a = \frac{\sqrt{2}}{\sqrt{3}} V_1 \cos (\omega t + \phi_0) \\
\phi_0 = \delta + \frac{\pi}{2}
\]

ここで、\(\nu_a \): 相の相電圧、\(V_1 \): 電子電圧、\(\omega \): 電源周波数、\(\delta \): 負荷角

図 3 と図 4 の速度応答特性から、同期速度に達する時間
が短い順に、B 機、A 機、C 機になっていることがわかる。
なお、電流とトルクの両特性を省略したが、B 機のトルク向上が
始動時のインピーダンスの減衰による始動電流の増加
によるものであることを付記する。図 5 と図 6 に定常負荷
時の入力電流と発電力をそれぞれ示す。計算では損失として
一次銅損のみを考慮したので、効率は高い値となっている
が、バー幅の変化に対して、出力に対する入力電流特性、
効率特性ともどまどま変化が見られないことがわかった。

3. むすび

ここでは、時間刻み有限要素法を用いて、回転子バー形
状に対する始動特性と効率との関係を明らかにした。特に、
回転子バーの断面を一定とした場合、エアギャップ側のバー
幅を大きくした場合、永久磁石同期電動機固有の高効率と
いう特長を損なうことなく、良好な始動特性が得られるこ
とが明らかになった。

（平成 15 年 1 月 10 日受付、平成 15 年 4 月 2 日再受付）

文献

Magnet Synchronous Motors”, Proc. of IPEC-Tokyo 2000,
Vol.3, No.4, pp.1290–1294 (2000-4)

2. K. Kurihara, Y. Baba, T. Nakada, T. Kubota, and H. W. Gao:
“Starting Performance Analysis of Self-Starting Permanent
Magnet Synchronous Motor—The Effect of Time Step—”,
Japanese)

（著者：高橋修平）