Magnetic Vibration Simulator with Magnetic Levitation for EDS Maglev
Toshiaki Muraï*，Member，Hitoshi Hasegawa*，Member，Takayuki Kashiwagi*，Member

A magnetic vibration simulator is one of the most important test tools to evaluate the basic performance of superconducting magnet (SCM) for EDS maglev. In this paper, we propose a new magnetic vibration simulator which can also suspend car and bogie mounted with the SCMs to evaluate the performance of not only SCMs but also vehicle dynamics with levitation. This system is composed of magnetic exciting coils which can simultaneously suspend and vibrate the SCMs and inverters which can simultaneously control 3-phase and zero-phase currents. This paper describes the principle, analytical method and control method of this system, and using numerical example, the vehicle dynamics and the vibration response of SCM are revealed.

Keywords: Electro-Dynamic Suspension, Vehicle dynamics, Superconducting magnet, Magnetic vibration

1. はじめに
超電導磁気浮上式鉄道において，超電導磁石はキーテクノロジーであり，その性能評価に関して，多くの試験が行われてきた。一つが電磁加振試験であり，超電導磁石に対向した電磁加振コイルに，走行時と同様な高調波磁界を発生させ，その時の超電導磁石のAC損失，各部振動，そして振動に伴う発熱を評価するものである（1）。本試験の現車試験前には超電導磁石の基本性能が確認できるばかりでなく，山梨実験線走行試験では完全に実現できない長時間走行時の熱損失を評価する等の補完的な役割も担っている。
一方，本試験における走行時との等価性の確認は，山梨実験線の走行試験が順調に進む現在もなお検討が続けられている。例えば超電導磁石を搭載する台車支持方法の違い（走行時は超電導磁石に作用する電磁力を作用させされるが，本試験は台車に設置されたばね等にて支持される）。超電導磁石への作用力の違い（走行時は定常力と振動力が作用する，本試験は振動力のみである）。影響評価等がある。これらの等価性に関しては，今後，各種試験及び解析解釈にて，明らかにされるだろうが，より走行時に等価な試験装置が用意できればより良い。

また車両輸送レールシステムでは，車両試験台と呼ばれ，走行している車両の状態を定量化で再現できる装置が有効に活用されており（2），超電導磁気浮上式鉄道においても，将来，同様の試験装置が望まれるものと考えられる。

以上のことを考え，今回，これまでの磁気加振装置を改良し，超電導磁石及びそれを搭載する台車を用いて，走行の等価性を検証し，その特性を検討する。これまでの同様な検討では，電磁加振コイルによる磁気支持コイルの2種類が必要であったが，本提案では，1種類のコイルにて，磁気加振と磁気支持の両方が行えることが最大の特徴である。以下，その構成と原理，加振コイル，制御システムを検討した結果を述べる。

2. 磁気支持電磁加振装置の構成と原理
磁気支持電磁加振装置の全体構成図を図1に示す。本装置は1層の電磁加振コイルとそれに電流を供給するインバータから成る。次に120度ビッチ浮上コイル（3）を模倣した電磁加振コイルを例にその配置と原理を図2に示す。従来の電磁加振コイルは，図2(a)に示すように，120度ビッチ浮上コイルが発生する主な高調波成分である2次空間波を模擬するために，2τ（超電導磁石の基本波磁界の波長）/2（空間高調波次数）/3（相数）をコイルビッチにて配置して，3相電流を流通させていた（以下，基本配置と呼ぶ）。一方，図2(b)に示すように，上記配置に

* (財) 鉄道総合技術研究所超電導磁気浮上式鉄道白金京都分室研究開発部
〒185-8540 東京都町田市大町 2-8-38
Research & Development Division, Maglev Systems Development Department, Railway Technical Research Institute
2-8-38, Hikari-cho, Kokubunji-shi 185-8540

1050 IEEJ Trans. IA, Vol.123, No.9, 2003
図1 磁気支持電磁加振装置の構成図
Fig. 1. Magnetic levitated vibration simulator.

図2 磁気支持電磁加振装置のコイル配置と原理
Fig. 2. Coil composition and principle of simulator.

図3 インバーターコイル間回路構成
Fig. 3. Circuit between inverter and coil.

図4 解析モデル
Fig. 4. Analytical model.
向をy，上方向をzとする。超電導コイル，加振コイル列が進行方向に超電導コイルビッチの倍（極対），上下方向にW_{x}にて周期的に配置されるとき，各加振コイルが作る磁界 \(B_{ij} \)（i = 1, 2, j = U, B）は，以下のようなる。

\[
B_{ij} = j \frac{\psi_{ij}}{\tau W_{x}} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left\{ k_{zm} e_{x} - j \lambda_{mn} e_{y} + k_{zn} e_{z} \right\}
\times f_{1j}(m, n) \exp \left\{-j \lambda_{mn}(y - yo) + j k_{zn}(z - z_{1j}) \right\}
+ j k_{zn}(z - z_{1j}) \quad (1)
\]

一方，この各加振コイルの磁界の和を越電導コイル極対に発生する左右力 \(F_{yij} \)，上下力 \(F_{zij} \)，ロールモーメント \(M_{zij} \)（i = 1, 2, j = U, B）は，各方向の微小変位 \(\Delta y, \Delta z, \Delta \phi \)に対するものも含め，以下のようになる。

\[
F_{yij} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} i_{ij} \left\{ + Q_{jy}(m) + Q_{jy}(m) \Delta y \right\} \quad (2)
\]

\[
F_{zij} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} i_{ij} \left\{ Q_{jy}(m) \Delta z \right\} \quad (3)
\]

\[
M_{zij} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} i_{ij} \left\{ Q_{jy}(m) \Delta z \right\} \quad (4)
\]

（複合はi = 1 の時上側，i = 2 の時下側とする）

\[
Q_{j}(m) = \frac{4 j \psi_{j0}}{\tau W_{x}} \sum_{n=-\infty}^{\infty} \left\{ \lambda_{mn} f_{0}(m, n) \right\} f_{1j}(m, n)
\times \exp \left\{-j \lambda_{mn}(y - yo) + j k_{zn}(z - z_{1j}) \right\} \quad (5)
\]

\[
Q_{jk}(m) = \frac{\partial Q_{j}(m)}{\partial k} \quad Q_{jk}(m) = \frac{\partial Q_{j}(m)}{\partial \lambda} \quad (6)
\]

\[
k_{zm} = \frac{m \pi}{\tau} \quad k_{zn} = \frac{n \pi}{w_{z}} \quad \lambda_{mn} = (k_{zm}^{2} + k_{zn}^{2})^{1/2} \quad (7)
\]

ここで超電導コイルの磁力 \(I_{0} \)，各加振コイルの電流 \(i_{ij} \)，超電導コイルの座標 \((x_{0}, y_{0}, z_{0}) \)，各加振コイルの座標 \((x_{1}, y_{1}, z_{1}) \)， \(f_{1j}(m, n) \) は加振コイルの形状の関数， \(f_{0}(m, n) \) は超電導コイル極対及び加振コイル列の形状と進行方向位置の関数である。

また台車に作用する左右力 \(F_{y} \)，上下力 \(F_{z} \)，ロールモーメント \(M_{z} \) は以下の通りである。

\[
F_{y} = F_{y1U} + F_{y1B} + F_{y2U} + F_{y2B} \quad (8)
\]

\[
F_{z} = F_{z1U} + F_{z1B} + F_{z2U} + F_{z2B} \quad (9)
\]

\[
M_{z} = M_{z1U} + M_{z1B} + M_{z2U} + M_{z2B} \quad (10)
\]

ここで各加振コイル電流を走行時の浮上コイル解析と同様に図5に示す等価回路電流の和として，またその各等
連成はねとなる。ロールモーメント \(M_y \) は第1項が左右とロールの連成はね、第2項がロールはねとなる。また上下はねは \([\{\}]\) 内において第1項が定常電流 \(I_{1R} \) によるばね、第2項が微小変位、電流 \(\dot{I}_{1b} \) によるばねによるものである。左右はね、連成はねは \([\{\}]\) 内において第1項が定常電流 \(I_{1R} \) によるばね、第2項が微小変位、電流 \(\dot{I}_{1b} \) によるばねである。以上のよう左手の15(15)式と同様、微小変位、電流 \(\dot{I}_{12b} \) を用いれば、本装置にて走行時と同等な電磁ばねを発生することができる。

なお上記の上下左右ロールモデルから図3に示す5自由度模型に拡張するには、各振動コイル電流を以下の通りとして、同様な方法によって解ければ良い。

\[
egin{pmatrix}
 \dot{i}_{1u} \\
 \dot{i}_{1b} \\
 \dot{i}_{2u} \\
 \dot{i}_{2b} \\
 \dot{i}_{3u} \\
 \dot{i}_{3b} \\
 \dot{i}_{4u} \\
 \dot{i}_{4b}
\end{pmatrix}
= \begin{pmatrix}
-1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
\dot{i}_L \\
\dot{i}_{G1} \\
\dot{i}_{G2} \\
\dot{i}_\phi \\
\dot{i}_\theta \\
\dot{i}_\psi \\
\dot{i}_\psi_1 \\
\dot{i}_\psi_2
\end{pmatrix}
\]

(20)

\[
\dot{i}_\theta = \dot{i}_\theta \Delta \theta \\
\dot{i}_\psi_1 = \dot{i}_\theta \Delta \psi \\
\dot{i}_\psi_2 = \dot{i}_\theta \Delta \psi
\]

(21)

(22)

(23)

その結果、左右力 \(F_x \)、上下力 \(F_y \)、ロールモーメント \(M_y \) は第15(15)式と同じで、ピッチモーメント \(M_y \)、ヨーモーメント \(M_y \) は以下のようになる。

\[
M_y = 2 \sum_{m=\infty}^{\infty} \{ I_{L}Q_{1\theta}(m) + i_{1\theta}Q_{1\theta}(m)\} \Delta \theta
\]

(24)

\[
M_y = 2 \sum_{m=\infty}^{\infty} \{ I_{L}Q_{1\psi}(m) + i_{1\psi}Q_{1\psi}(m) + i_{2\psi}Q_{2\psi}(m)\} \Delta \psi
\]

(25)

(26)

(27)

(28)

(29)

(30)

(31)

4. 数値例による検討

4.1 計算結果

検討を行うにあたっての基本的な計算条件、コイル配置を表1、図5に示す。

4.2 電相電流による電磁力、電磁ばね 3-1) 節で検討したように、表1の浮上力を発生するための定常電流及び走行時電磁ばねと同等のばねを発生するための各電流フィードバック係数を表2に示す。またその時の各電磁力、電磁ばねを表3に走行時ともに示す。表3から本装置において、適切な制御電流を通過すれば、走行時と同等な電
表1 検討諸元
Table 1. Specifications.

<table>
<thead>
<tr>
<th>[System]</th>
<th>Levitation force (Superconducting coil)</th>
<th>210 kN/bogie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Magnetostatic force</td>
<td>1.07×0.5 m</td>
</tr>
<tr>
<td>Number</td>
<td>700 kA</td>
<td>4 poles×2 rows per bogie</td>
</tr>
<tr>
<td>[Exciting coil]</td>
<td>Pitch</td>
<td>0.45 m</td>
</tr>
<tr>
<td>Dimensions</td>
<td>0.27×0.24 m (corner R 60 mm)</td>
<td></td>
</tr>
<tr>
<td>Cross section</td>
<td>0.078×0.1 m</td>
<td></td>
</tr>
<tr>
<td>Number of turn</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Vertical pitch</td>
<td>0.42 m</td>
<td></td>
</tr>
<tr>
<td>Lateral displacement</td>
<td>0.16 m</td>
<td></td>
</tr>
<tr>
<td>Winding material</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>[Levitation coil]</td>
<td>Pitch</td>
<td>0.9 m</td>
</tr>
<tr>
<td>Dimensions</td>
<td>0.8×0.24 m (corner R 100 mm)</td>
<td></td>
</tr>
<tr>
<td>Cross section</td>
<td>0.078×0.038 m</td>
<td></td>
</tr>
<tr>
<td>Vertical pitch</td>
<td>0.42 m</td>
<td></td>
</tr>
<tr>
<td>Lateral displacement</td>
<td>0.186 m</td>
<td></td>
</tr>
<tr>
<td>Winding material</td>
<td>Aluminum</td>
<td></td>
</tr>
</tbody>
</table>

Magnetic exciting coil

370 370 370 145 370 370 145

U V W -V -W -U -V

Superconducting coil

Unit: mm

図6 コイル配置（超電導コイル極対分）
Fig. 6. Coil arrangement.

表2 定常電流と電流フィードバック係数
Table 2. Constant current and feedback coefficient.

<table>
<thead>
<tr>
<th>I1(A)</th>
<th>I2(A/m)</th>
<th>I3(A/m)</th>
<th>I4(A/m)</th>
<th>I5(A/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-228</td>
<td>5889</td>
<td>-1484</td>
<td>8199</td>
<td>-6120</td>
</tr>
<tr>
<td>I6(A/m rad)</td>
<td>I7(A/m rad)</td>
<td>I8(A/m rad)</td>
<td>I9(A/m rad)</td>
<td></td>
</tr>
<tr>
<td>-1108</td>
<td>9337</td>
<td>-2659</td>
<td>-11446</td>
<td></td>
</tr>
</tbody>
</table>

表3 片側台車あたりの磁力、電磁ばね
Table 3. Magnetic force and stiffness per half bogie.

<table>
<thead>
<tr>
<th>I</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>ϕ</th>
<th>θ</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fm</td>
<td>-25061</td>
<td>106410</td>
<td>106410</td>
<td>158125</td>
<td>157000</td>
<td>5009</td>
</tr>
<tr>
<td>ke</td>
<td>-147544</td>
<td>-148240</td>
<td>-148240</td>
<td>-148240</td>
<td>-148240</td>
<td>-148240</td>
</tr>
<tr>
<td>ke</td>
<td>-243422</td>
<td>-243422</td>
<td>-243422</td>
<td>-243422</td>
<td>-243422</td>
<td>-243422</td>
</tr>
<tr>
<td>ke</td>
<td>1877993</td>
<td>1877993</td>
<td>1877993</td>
<td>1877993</td>
<td>1877993</td>
<td>1877993</td>
</tr>
<tr>
<td>ke</td>
<td>-555871</td>
<td>-555871</td>
<td>-555871</td>
<td>-555871</td>
<td>-555871</td>
<td>-555871</td>
</tr>
<tr>
<td>ke</td>
<td>-551180</td>
<td>-551180</td>
<td>-551180</td>
<td>-551180</td>
<td>-551180</td>
<td>-551180</td>
</tr>
<tr>
<td>ke</td>
<td>-4121990</td>
<td>-4121990</td>
<td>-4121990</td>
<td>-4121990</td>
<td>-4121990</td>
<td>-4121990</td>
</tr>
</tbody>
</table>

1) Upper: simulator, lower: running
2) F(x,y,z): N, Mₐ,i,i=θ,ψ,θ):Nm, kₐ,i=θ,ψ,θ,ψ):Nm/m, kₐ,i=θ,ψ,θ,ψ,ϕ,j):Nm/rod

図7 電圧型電源における制御回路
Fig. 7. Control circuit of voltage-type power supply.

表4 車両振動モデル諸元
Table 4. Specifications of vehicle dynamics.

<table>
<thead>
<tr>
<th>Mass of car</th>
<th>14 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of bogie</td>
<td>6 t</td>
</tr>
<tr>
<td>Stiffness between car and bogie</td>
<td>700 kN/m per bogie</td>
</tr>
<tr>
<td>Damper between car and bogie</td>
<td>20 kN/m per bogie</td>
</tr>
<tr>
<td>Magnetic stiffness</td>
<td>Refer to Table 3</td>
</tr>
<tr>
<td>Magnetic damping</td>
<td>0 kN/m</td>
</tr>
</tbody>
</table>

図8 軌道側変位1 mmに対する移動応答
Fig. 8. Vibration response to 1 mm of guideway irregularity.

磁ばねを発生できることが確認できる。なお本検討は、新
加振コイルの基本配置に対向する超電導コイルの値である
が、逆配置と組み合わせた場合及び進行方向位置を変え
た場合の変化は10%以下である。

(4-3) 電圧型電源と車両振動
前節の制御電流を通電するために、電圧型電源における制御回路を図7に示す。こ
でx, yは台車の各変位とその速度、R, Lは各加振コ
イル駆動の抵抗とインダクタンス、cは表2の電流フィード
バック係数であり、制御電圧eは、制御電流通電時の電
インピーダンス降下分の電圧に、ロバスト化するため、制御電
流指令値i₀と電流iの差分をフィードバックした。

次に上下系を例に、表4の2自由度モデルを考え、その時
の軌道側変位に対する車両応答を走行時（Running）及び
上記電圧型電源を利用した電流加振試験（Simulator1）に
ついて図8に示す。また同図にパラメータ変動した例とし
て、加振コイル抵抗20%増、インダクタンス20%減の場合

1054 IEEJ Trans. IA, Vol.123, No.9, 2003
図9 超電導コイルあたりの加振力
Fig.9. Excited force of superconducting coil.

図10 超電導磁石の振動応答
Fig.10. Vibration response of superconducting magnet.

5. まとめ

1種類のコイルを用いる電磁加振試験で電磁圧縮歯が行う電磁加振装置を提案し、その動作原理及び特性解析を示すとともに数値例によって特性の検討を行った。その結果、以下の通りである。

(1) 各変位比に比例した適切な制御電流を通電することによって、走行時と同等な自由度の磁気ばねが発生できる。

(2) 具体的な電圧制御の制御方法を示し、加振コイルのパラメータ変動がある場合でも、走行時と同等な車両振動特性が得られる。

(3) 電磁加振試験における高周波磁界による加振力の特徴を進行方向方向について示し、走行時と等価になる配置を提案した。

今後、冷却方法等含めて具体的な装置の構成を検討するとともに、1自由度の基礎試験を実施する予定である。

(平成14年11月25日受付、平成15年3月26日再受付)

文献

(2) 日本機械学会:「鉄道技術のダイナミックス」、電気車研究会, pp.76-82 (1994)

(4) H. Hasegawa, T. Murai, T. Yamamoto, and E. Watanabe: "Analysis of PWM converter for linear generator controlling
長谷川 均（正員）1968年10月28日生。1993年3月早稲田大学大学院理工学研究科修士課程電気工学専攻修了。同年（財）鉄道総合技術研究所入所、現在に至る。主として車上電源の研究、開発に従事。工博。

村井 敏昭（正員）1964年11月3日生。1989年3月早稲田大学大学院理工学研究科修士課程電気工学専攻修了。同年（財）鉄道総合技術研究所入所、現在に至る。主としてリニアモータ、磁気浮上とかのご素の研究、開発に従事。工博。

柏本 隆行（正員）1971年4月4日生。1997年3月早稲田大学大学院理工学研究科修士課程電気工学専攻修了。同年（財）鉄道総合技術研究所入所、現在に至る。主として車上電源の研究、開発に従事。