Abstract
This paper presents a novel design approach for feedforward compensation by employing specified step settling to provide fast and precise positioning control of mechatronic systems. In the conventional approach, the saturation of control input essentially deteriorates the control performance in terms of response time and residual vibration suppression. However, in the proposed method of feedforward compensation, command shaping is performed within the deadbeat control framework, wherein a constraint on the control input can be imposed by using the LMI technique to ensure the desired control performance. Therefore, by using the proposed approach, a 2-degrees-of-freedom positioning controller can achieve the required settling performance without causing residual vibration under the constraint. The effectiveness of the proposed approach has been verified by carrying out numerical simulations and experiments on a prototype.