J-STAGE トップ  >  資料トップ  > 書誌事項

Vol. 132 (2012) No. 3 P 322-332




This paper proposes a new fine-motion-control method for realizing high-accuracy and high-speed contact motion of industrial robots by employing sensorless force control. Today, although industrial robots have become considerably important in the modern industrial society, their functions are limited. A typical limited function is the positioning motion control of robots used in the manufacturing industry. Contact motion is necessary for almost all new applications. In this study, by employing the proposed motion control, smooth and quick contact motion of industrial robots is realized by using a sensorless I-P (Integral-Proportional) force feedback controller. The proposed method is simple and effective, takes into account both the inertia of a robot and the behavior of the I-P force controller. In the experiments, a three-degree-of-freedom robot is brought into contact with an object (a concrete block or a rubber board) by the I-P force control using the proposed method. Further, in the experiment, the motion of the robot's end-effector was considered. The validity of the proposed method is confirmed by using a six-axis force sensor and an acceleration sensor in the contact motion experiments.

Copyright © 電気学会 2012