電気学会論文誌D(産業応用部門誌)
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
論文
ロボット群による仮想フェロモンを伴う粒子群最適化を用いた探索アルゴリズムの研究
稲原 大翔元井 直樹
著者情報
ジャーナル 認証あり

2022 年 142 巻 2 号 p. 86-94

詳細
抄録

This paper proposes a search algorithm using particle swarm optimization (PSO) with virtual pheromone for swarm robots. Swarm robots are attracting attention in disaster relief works to search for victims. The search algorithm involves a combination of global and local searching. The conventional search method consists of random walk as the global search and PSO as the local search. However, random walk is not efficient in complex environments. For efficient searching, PSO with virtual pheromone is used for the global search. The virtual pheromone drives the swarm robots to an unsearched area, dose not need map data, and has low calculation cost. In addition, it is not necessary in the proposed method to switch algorithms between global and local searching. The validity of the proposed method was confirmed from the simulation results.

著者関連情報
© 2022 電気学会
前の記事 次の記事
feedback
Top