電気鉄道における AI応用技術の動向
VI. インテリジェントな需要予測・情報システム

キーワード
需要予測、交通計画、波動輸送

1. はじめに

鉄道の経営のためには、輸送需要に適合した計画の立案が最も重要である。新しい路線の建設、速度向上、運賃料金の設定、臨時電車の設定等に対する輸送需要の変化、提供されるサービスに対する利用者の交通機関選択行動の結果として顕在化が進んだ。

この利用者の交通機関選択行動は、対象地域の社会経済状況や交通ネットワークの整備状況に依存し、非常に複雑な非構造的な問題である。従来は、利用者の交通機関選択行動はブラック・ボックスとし、計画者の経験に基づいて一意的な経験式による推定が行われてきた。

しかし、近年のコンピュータ技術の発展と計画技術の進歩により、社会経済環境と交通環境と交通機関選択行動をモデル化したインテリジェントな意思決定支援システムの開発が進んだ。

需要予測のベースとなる技術は、交通行動モデル、社会経済データベース、地理情報処理、ネットワーク処理、時系列処理、及び、これからの処理に適したグラフィカル・インターフェースである。

ここでは、上記の機能を組み込んだインテリジェントな需要予測システムについて紹介する。

2. 交通需要予測の枠組(1)

交通需要予測は、1)発生・集中量の推定、2)分布交通量の推定、3)交通機関選択の推定、4)ルート選択の推定、5)波動需要の推定の5段階のステップで行われる。

しかし、需要予測も非常にパラエティがある。

新東京計画：2000年、リニアを利用して東京～大阪間を旅行する年間の旅客数の推定

列車計画：来年の10月10日の13時～14時の間に、東京～新大阪間を旅行する旅客数の推定

Prospects of Application of Artificial Intelligence to Electric Railways.
VI Intelligent Transportation Demand Forecasting Systems
By Naotugu Nozue (Railway Technical Research Institute)
な観測結果を元に、次の推定を行う。

（1）基礎データベース構築
　1、延長率データの推定
　2、通過率データの推定

（2）理解性評価
　1、理解度評価
　2、使用者調査

3. データベース構築
　1、デジタル化
　2、知識の抽出

4. モデル作成
　1、物理的なモデル
　2、数理的なモデル

5. 実験結果解析
　1、実験結果の比較
　2、モデルの検証

6. 仮定の設定
　1、仮定の設定
　2、仮定の検討

7. まとめ
　1、まとめ
　2、研究のまとめ

文 献

(1) 野末：交通システム工学，日本交通学会，84，1977
(2) 木村：交通システム工学，日本交通学会，84，1977
(3) 鈴木：交通システム工学，日本交通学会，84，1977
(4) 松本：交通システム工学，日本交通学会，84，1977
(5) 野末：交通システム工学，日本交通学会，84，1977