Harmonic Current Compensation Using Constant DC-Capacitor Voltage-Control-Based Strategy of Three-Level Neutral-Point-Clamped Inverter-Based STATCOM with Reactive Power Control

Ayumu Tokiwa∗ Student Member, Yukiharu Satake∗ Student Member
Hiroaki Yamada∗ Member, Toshihiko Tanaka∗a) Fellow
Mitsunori Fukuda∗∗ Non-member

This paper proposes a constant dc-capacitor voltage-control (CDCVC)-based reactive power control strategy of a static synchronous compensator (STATCOM) with a three-level neutral-point-clamped (NPC) inverter, in which the source-side harmonic currents are also compensated. The CDCVC-based reactive power control strategy uses only a CDCVC, which is always used in the grid-connected inverters, STATCOMs etc. Calculation blocks of fundamental active, reactive, and harmonic components are not needed. Thus, the authors offer a simplified strategy for a source-side reactive power control with source-side harmonic current compensations. The authors offer a simplified strategy for a source-side active power control with source-side harmonic current compensations. The instantaneous power flowing into the STATCOM with a three-level NPC inverter is discussed in detail. The instantaneous power flow shows that using the CDCVC-based strategy for the STATCOM achieves sinusoidal source currents using the controlled source-side reactive power compensating the harmonic currents on the source side. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based strategy. A reduced-scale prototype experimental model is constructed and tested. The simulation and experimental results demonstrate that sinusoidal source currents are obtained with the CDCVC-based strategy controlling the reactive power on the source side.

Keywords: neutral-point-clamped inverter, static synchronous compensator, constant dc-capacitor voltage control, reactive power control, harmonics compensation

1. Introduction

Static synchronous compensators (STATCOMs) are now on practical to solve the reactive power interferences. A three-level neutral-point-clamped (NPC) inverter, which was originally proposed by Prof. Nabae, et al., is widely used in industries. The three-level NPC inverter-based STATCOM can be directly connected to the 6,600-Vrms high-voltage distribution feeders. This is a great advantage of the three-level NPC inverter-based STATCOM. For the control strategy of the STATCOMs, the instantaneous active-reactive power theory originally proposed by Prof. Akagi, et al. is widely used. Most of this control algorithm is based on instantaneous active-reactive power theory and its extensions for the calculation of reference currents. A synchronous reference frame, decomposition in the time domain of the load currents and theory of instantaneous symmetrical component are also proposed. These reference current calculation methods require a large number of computation steps including transformation blocks. In single-phase three-wire distribution feeders, the present authors proposed a constant dc-capacitor voltage-control (CDCVC)-based strategy of the smart charger (SC) for electric vehicles (EVs) that can achieve sinusoidal and balanced source currents with a controlled reactive power on the source side.

This paper proposes a CDCVC-based reactive power control strategy for a three-level NPC inverter-based STATCOM, in which the source-side harmonic currents are also compensated. The CDCVC-based reactive power control strategy uses only a CDCVC, which is always used in the grid-connected inverters, STATCOMs etc. Calculation blocks of fundamental active, reactive, and harmonic components are not needed. The authors offer a simplified strategy for a source-side reactive power control with source-side harmonic current compensations. The instantaneous power flowing into the STATCOM with a three-level NPC inverter is discussed in detail. The instantaneous power flow shows that using the CDCVC-based strategy for the STATCOM achieves sinusoidal source currents using the controlled source-side reactive power compensating the harmonic currents on the source side. The simulation and experimental results demonstrate that sinusoidal source currents are obtained with the CDCVC-based strategy controlling the reactive power on the source side.
2. Constant DC-Capacitor Voltage-Control-Based Strategy for STATCOM

Figure 1 shows a circuit diagram of a three-level NPC inverter-based STATCOM with the proposed constant dc-capacitor voltage-control (CDCVC)-based reactive power control strategy. The proposed strategy uses only the CDCVC block, which is always used in the grid-connected inverters, STATCOMs etc. To claim the novelty, simplicity, and practicability of the proposed CDCVC-based reactive power control strategy, the authors, now, compare the proposed strategy to the reactive power control strategy with the instantaneous active-reactive power theory originally proposed by Prof. Akagi, et al. In Figure 1, three-phase terminal voltages \(v_{Ta}, v_{Tb}, \) and \(v_{Tc} \) are expressed as

\[
\begin{align*}
 v_{Tt} & = \sqrt{2} V_T \cos \omega t, \\
 v_{Tb} & = \sqrt{2} V_T \cos \left(\omega t - \frac{2}{3} \pi \right), \\
 v_{Tc} & = \sqrt{2} V_T \cos \left(\omega t + \frac{2}{3} \pi \right) \quad \text{................................(1)}
\end{align*}
\]

Let assume that the three-phase load currents \(i_{La}, i_{Lb}, \) and \(i_{Lc} \) include harmonic currents. The three-phase load currents \(i_{La}, i_{Lb}, \) and \(i_{Lc} \) are expressed as

\[
\begin{align*}
 i_{La} & = \sqrt{2} I_{L1} \cos (\omega t - \phi_1), \\
 i_{Lb} & = \sqrt{2} I_{L1} \cos \left(\omega t - \frac{2}{3} \pi - \phi_1 \right), \\
 i_{Lc} & = \sqrt{2} I_{L1} \cos \left(\omega t + \frac{2}{3} \pi - \phi_1 \right) \quad \text{................................(2)}
\end{align*}
\]

When the terminal voltages \(v_{Ta}, v_{Tb}, \) and \(v_{Tc} \), and the load currents \(i_{La}, i_{Lb}, \) and \(i_{Lc} \) are transformed into \(\alpha-\beta \) coordinates, the instantaneous active power \(p \) and instantaneous reactive power \(q \) are given by

\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix} =
\begin{pmatrix}
 v_{Ta} & v_{Tb} \\
 -v_{Tb} & v_{Ta}
\end{pmatrix}
\begin{pmatrix}
 i_{La} \\
 i_{Lb}
\end{pmatrix} \quad \text{................................(3)}
\]

From (3), the three-phase load currents on \(\alpha-\beta \) coordinates are decomposed as

\[
\begin{align*}
 i_{La} & = \frac{v_{Ta}}{v_{Ta}^2 + v_{Tb}^2} \hat{p} + \frac{v_{Tb}}{v_{Ta}^2 + v_{Tb}^2} \hat{q}, \\
 i_{Lb} & = -\frac{v_{Tb}}{v_{Ta}^2 + v_{Tb}^2} \hat{p} + \frac{v_{Ta}}{v_{Ta}^2 + v_{Tb}^2} \hat{q}, \\
 i_{Lc} & = \frac{v_{Ta}^2 + v_{Tb}^2}{v_{Ta}^2 + v_{Tb}^2} \hat{p} - \frac{v_{Tb}}{v_{Ta}^2 + v_{Tb}^2} \hat{q},
\end{align*}
\]
the dc component of the three-phase source currents that contains the fundamental components, and \(\tilde{\mathbf{p}} \) and \(\tilde{\mathbf{q}} \) are originated in the harmonic components in (2). In (4), controlling the dc component \(\tilde{\mathbf{q}} \) on the source side with \(\mathbf{p} \) achieves the reactive power control on the source side.

Figure 2 shows a control circuit diagram for STATCOMs. Figure 2(a) shows a block diagram of the instantaneous active-reactive power theory-based reactive power control strategy. Figure 2(b) shows a block diagram of the proposed CDCVC-based reactive power control strategy, which is the part enclosed by the dotted line in Figure 1. The authors, thus, claim that the simplified source-side reactive power control strategy is offered.

The basic principle of the proposed CDCVC-based reactive power control strategy is, now, discussed in detail. When the harmonic currents of the three-phase load currents \(i_{La}, i_{Lb}, \) and \(i_{Lc} \) are compensated on the source side by the STATCOM with the proposed CDCVC-based reactive power control strategy, the three-phase source currents \(i_{Sa}, i_{Sb}, \) and \(i_{Sc} \) are sinusoidal with a controlled reactive power. Three-phase source currents, therefore, can be expressed as

\[
i_{Ga} = \sqrt{2} I_s \cos(\omega t - \phi) = \sqrt{2} I_p \cos(\omega t + K \sin(\omega t)),
\]
\[
i_{Gb} = \sqrt{2} I_s \cos(\omega t - \frac{2}{3} \pi - \phi) = \sqrt{2} I_p \left(\cos(\omega t - \frac{2}{3} \pi) + K \sin(\omega t - \frac{2}{3} \pi) \right),
\]
\[
i_{Gc} = \sqrt{2} I_s \cos(\omega t + \frac{2}{3} \pi - \phi) = \sqrt{2} I_p \left(\cos(\omega t + \frac{2}{3} \pi) - K \sin(\omega t + \frac{2}{3} \pi) \right),
\]

where \(I_p = I_s \cos \phi \) and \(K = \tan[\cos^{-1}(\text{power factor (PF)})].\)

The RMS value \(I_p \) of the active currents in each phase on the source side in (5) is given by

\[
I_p = I_{L1} \cos \phi_1.
\]

Note that this \(I_p \) equals the RMS value of the active currents \(I_p = I_{L1} \cos \phi_1 \) on the load side. Thus, it is concluded that the CDCVC of the STATCOM in Figure 1 can calculate the fundamental active current of the load currents \(i_{La}, i_{Lb}, \) and \(i_{Lc} \) in three-phase circuits. In the control circuit block of Figure 1, the dc-capacitor voltages \(V_{C1} \) and \(V_{C2} \) are detected. Then, the
The difference between the detected dc-capacitor voltage $v_{C1} + v_{C2}$ and the reference value V_{DC} of the dc-capacitor voltage is amplified by the proportional-integral (PI) controller. A moving-average low-pass filter (LPF) is used to remove the 6ω angular frequency component, where ω is the angular frequency of the terminal voltages v_{Ta}, v_{Tb}, and v_{Tc}. Then, the RMS value I_p of the active currents in each phase is obtained. With the control gain K, the RMS value of the fundamental reactive currents on the source side is calculated, where this control gain K can control the reactive power on the source side. Figure 3 shows a per-phase phasor diagram for the terminal voltage V_{T}, the source current i_S, and the load current I_L. From Figure 3, controlling the control gain K can control the source-side reactive power. The line-to-line voltages v_{ab} and v_{bc} are detected, and then, an electrical angle θ_b is generated using a three-phase phase-locked-loop (PLL) (15). Using this θ_b, I_p, and K_I, the source currents i_{S1}, i_{S2}, and i_{S3} with the controlled reactive power in a-b-c coordinates are calculated. Subtracting the calculated i_{S1}, i_{S2}, and i_{S3} from the detected load currents i_{La}, i_{Lb}, and i_{Lc} gives the reference values i_{Ca}, i_{Cb}, and i_{Cc} of the STATCOM. The reference values i_{Ca}, i_{Cb}, and i_{Cc} in a-b-c coordinates are given by

$$i_{Ca} = i_{La} - i_{Sa},$$

$$i_{Cb} = i_{Lb} - i_{Sb},$$

$$i_{Cc} = i_{Lc} - i_{Sc}.$$ \hspace{1cm} (10)

The PI controllers in d-q coordinates are used to control the output currents i_{Ca}, i_{Cb}, and i_{Cc}. Thus, the differences between the reference values i_{Ca}^*, i_{Cb}^*, and i_{Cc}^* and the detected values i_{Ca}, i_{Cb}, and i_{Cc} in a-b-c coordinates are transformed into i_{Ca}^* and i_{Cc}^*, respectively. i_{Ca} and i_{Cc} are amplified by the PI controllers in d-q coordinates. The amplified differences are retransformed into a-b-c coordinates. It is well known that two dc-capacitor voltages v_{C1} and v_{C2} are unbalanced (16).

Prof. H. Akagi et al. proposed a voltage-balancing control with the 6th-order zero-sequence voltage $\cos(6\theta_b + \phi)$ for a three-level NPC inverter (16). The basic principle of the proposed voltage-balancing control was discussed in detail. The experimental results demonstrated that adding $\cos(6\theta_b + \phi)$ to the reference values of the three-phase output voltages well balanced two dc-capacitor voltages, where $\phi = 1.4$ rad. In this paper, the 6th-order zero-sequence voltage is, thus, added to the reference values of the three-phase output voltages v_{B1}, v_{B2}, and v_{B3} in Figure 1. For more detail, see the literature (17). The 6th-order zero-sequence voltage is added to the three-phase reference voltages v_{B1}, v_{B2}, and v_{B3} (16). A sinetriangle intercept technique is used to generate the gate signals for twelve insulated-gate bipolar transistors (IGBTs).

![Fig. 3. Per-phase phasor diagram for the terminal voltage V_T, the source current i_S, and the load current I_L.](image)

Table 1. Circuit constants for Figure 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source inductor</td>
<td>L_a</td>
<td>0.8 mH</td>
</tr>
<tr>
<td>Switching inductor</td>
<td>L_{S}</td>
<td>12.8 mH</td>
</tr>
<tr>
<td>Filter capacitor</td>
<td>L_p</td>
<td>44.8 mH</td>
</tr>
<tr>
<td>Reference dc-capacitor voltage</td>
<td>V_{dc}</td>
<td>400 Vdc</td>
</tr>
<tr>
<td>DC capacitor</td>
<td>C_1</td>
<td>14300 µF</td>
</tr>
<tr>
<td>DC capacitor</td>
<td>C_2</td>
<td>14300 µF</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>f_{sw}</td>
<td>17 kHz</td>
</tr>
</tbody>
</table>

![Fig. 4. Simulation waveforms for Figure 1 with the control gain $K = \tan(\cos^{-1}(PF)) = 0$ as shown in Figure 3.](image)

3. Simulation Results

Digital computer simulation is implemented to confirm the validity and high practicability of the proposed CDVCV-based reactive power control strategy using PSIM software. The three-phase load currents i_{La}, i_{Lb}, and i_{Lc} include the 5th- and 7th-order harmonic currents in following simulation results. The ratings of three-phase source voltages are 200 Vrms and 60 Hz. The rated three-phase load is 10 kVA. Therefore, the RMS value of the fundamental components of the load currents is 28.7 Arms. The 5th-order components of 5.7 Arms, which is 20% as compared to the RMS value of fundamental component, and the 7th-order components of 4.1 Arms, which is 14.3%, are also included in the load currents i_{La}, i_{Lb}, and i_{Lc}. Thus, total harmonic distortion (THD) values of i_{La}, i_{Lb}, and i_{Lc} are 24.6%. The PF between the terminal voltages and load currents is 0.70. Table 1 shows circuit constants for Figure 1, which were used in the following simulation results.

Figure 4 shows simulation results for Figure 1 with the control gain $K = \tan(\cos^{-1}(PF)) = 0$ as shown in Figure 3. v_{T}, v_{B1}, v_{B2}, and v_{B3} are the terminal voltage waveforms and i_{Sa}, i_{Sb}, and i_{Sc} are the source current waveforms. i_{La}, i_{Lb}, and i_{Lc} are the load current waveforms; i_{Ca}, i_{Cb}, and i_{Cc} are the compensation current waveforms of the STATCOM with the three-level NPC inverter; and v_{C1} and v_{C2} are the dc-capacitor voltage waveforms. Although the load currents i_{La}, i_{Lb}, and i_{Lc} are distorted with the PF of 0.70, the source currents i_{Sa}, i_{Sb}, and i_{Sc} are sinusoidal with the PF of 1.00. The THD values of i_{Sa}, i_{Sb}, and i_{Sc} are 5.8%, 5.9%, and 5.8%, respectively. The dc-capacitor voltages v_{C1} and v_{C2} are well balanced with the method proposed in (17). The ripples of v_{C1} and v_{C2} are ±
of the proposed control method, which uses only CDCVC for the STATCOM. Figure 7 shows a block diagram of the constructed prototype experimental model. The ratings of three-phase source voltage are 200 Vrms and 60 Hz. Three-phase load consists of three-phase diode rectifier and Y-connected inductor. The rated three-phase load is 6.7 kVA. The PF between the terminal voltages and load currents is 0.60, and THD values of i_{a}, i_{b}, and i_{c} are 13.6%. Table 2 shows circuit constants for Figure 7, which were used in the following experimental results. The detected line-to-line voltages v_{ab}, v_{bc}, and v_{ca} are the terminal voltage waveforms and i_{a}, i_{b}, and i_{c} are the source current waveforms. i_{a}, i_{b}, and i_{c} are load current waveforms; i_{a}, i_{b}, and i_{c} are the compensation current waveforms of the STATCOM with the NPC inverter, and v_{c1} and v_{c2} are the dc-capacitor voltage waveforms. Although the load currents i_{a}, i_{b}, and i_{c} are distorted with the PF of 0.60, the source currents i_{a}, i_{b}, and i_{c} are sinusoidal with the PF of 0.90. The THD values of i_{a}, i_{b}, and i_{c} are 9.0%, 9.0%, and 8.9%, respectively. The dc-capacitor voltages v_{c1} and v_{c2} are well balanced with the method proposed in (17). Thus, the CDCVC-based strategy for the STATCOM with a three-level NPC inverter achieves not only the source-side harmonic current compensations but also reactive power control with the proposed CDCVC-based reactive power control strategy. The experimental results of Figure 8 and Figure 9 are in good agreement with the simulation results of Figure 4 and Figure 5.

5. Conclusion

This paper has proposed a CDCVC-based reactive power control strategy of a STATCOM with a three-level NPC inverter, in which the source-side harmonic currents are also compensated. The CDCVC-based reactive power control strategy uses only a CDCVC, which is always used in the grid-connected inverters, STATCOMs etc. Calculation blocks of fundamental active, reactive, and harmonic components are not needed. The authors offer a simplified strategy for the source-side reactive power control with the source-side harmonic current compensations. The instantaneous power flowing into the STATCOM with a three-level NPC inverter has been discussed in detail. The instantaneous

![Fig. 5. Simulation waveforms for Figure 1 with the control gain $K = \tan(\cos^{-1}(PF)) = 0.484$ as shown in Figure 3](image)

![Fig. 6. Theoretical values and simulated values between the control gain $K = \tan(\cos^{-1}(PF))$ and the source-side PF](image)
Constant DC-Capacitor Voltage-Control-Based Strategy for STATCOM (Ayumu Tokiwa et al.)

Fig. 7. Brock diagram of constructed experimental model for STATCOM with three-level NPC inverter in Figure 1

Table 2. Circuit constants for Figure 7

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching inductor</td>
<td>L_f</td>
<td>1.28 mH</td>
</tr>
<tr>
<td>Filter capacitor</td>
<td>C_f</td>
<td>6.0 µF</td>
</tr>
<tr>
<td>Reference dc-capacitor voltage</td>
<td>V_{DC}</td>
<td>400 Vdc</td>
</tr>
<tr>
<td>DC capacitor</td>
<td>C_1, C_2</td>
<td>11200 µF</td>
</tr>
<tr>
<td>Unit capacitance constant</td>
<td>H</td>
<td>44.8 ms</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>f_{sw}</td>
<td>7.2 kHz</td>
</tr>
<tr>
<td>Inductor</td>
<td>L</td>
<td>20 mH</td>
</tr>
<tr>
<td>DC-side resistor of three-phase diode rectifier</td>
<td>R_d</td>
<td>16.7 Ω</td>
</tr>
<tr>
<td>AC-side inductor of three-phase diode rectifier</td>
<td>L_c</td>
<td>1.2 mH</td>
</tr>
</tbody>
</table>

Fig. 8. Experimental waveforms for Figure 7 with the control gain $K = \tan\{\cos^{-1}(PF)\} = 0$ as shown in Figure 3

controlled source-side reactive power compensating the harmonic currents on the source side. A digital computer simulation has been implemented to confirm the validity and high practicability of the CDCVC-based strategy. A reduced-scale prototype experimental model has been constructed and tested. The simulation and experimental results have demonstrated that the sinusoidal source currents are obtained with the CDCVC-based strategy controlling the reactive power on the source side.

In this paper, balanced load conditions have been considered to demonstrate the validity and high practicability of the proposed CDCVC-based harmonic current compensation strategy with reactive power control. The compensation
performance of the proposed CDCVC-based strategy of the three-level NPC inverter-based STATCOM under unbalanced load conditions is a next issue for further study. This will be reported in another article.

References

Ayumu Tokiwa (Student Member) received the B.E. and M.E. degrees in electrical engineering from Yamaguchi University in 2016 and 2017, respectively. He is currently working toward the Ph.D. degree in engineering. He is engaged in research on static synchronous compensator. He is a student member of the IEEE.

Yukiharu Satake (Student Member) received the B.E. degrees in electrical engineering from Yamaguchi University in 2018. He is currently working toward the M.E. degree in electrical engineering. He is engaged in research on static synchronous compensator.

Hiroaki Yamada (Member) received the M.E. degree from Shintome University in 2004. In 2007, he received the Doctor of Engineering from Yamaguchi University. From 2007 to 2010, he was a Lecturer at Kushiho National College of Technology. From 2010 to 2014, he was an Assistant Professor at Kyushu Institute of Technology. Since 2014, he has been a Lecturer in the Department of Electrical and Electronic Engineering at Yamaguchi University. His research interests include power conversion systems for LED drivers and wind power generation system. Dr. Yamada is a member of the IEEE.

Toshihiko Tanaka (Fellow) was born in Hokkaido, Japan, in 1959. He received the M.E. degree from Nagaoka University of Technology in 1984. In 1995, he received the Ph.D. degree in Engineering from Okayama University, Japan. He joined Toyo Denki Mfg. Co. in 1984. From 1991 to 1997, he was an Assistant Professor at the Polytechnic University of Japan. From 1997 to 2004, he was an Associate Professor at Shimane University. Since 2004, he has been a Professor in the Department of Electrical and Electronic Engineering at Yamaguchi University. His research interests are on harmonics generated by static power converters and their compensation. Dr. Tanaka is a member of the IEEE.

Mitsunori Fukuda (Non-member) received the B.E. degrees in electrical and communication engineering from Tokyo Denki University in 1989. He joined the Chugoku Electric Manufacturing Company, Incorporated in 1993. Since 2012, he has been a section manager in the Chugoku Electric Manufacturing Company, Incorporated. He is engaged in development of power system supervisory control systems and static var compensators.