GA による系図自動描画支援システムの構築

正員 川原 耕治* 正員 造賀 芳文**
正員 佐々木博司**

Construction of an Automatic Drawing System for Power System Diagram by Using GA
Koji Kawahara*, Member, Yoshifumi Zoka**, Member, Hiroshi Sasaki**, Member

In case of analyzing power system by numerical calculation for power flow and transient stability, it is very useful to make a power system diagram to ease the modification and the change of data for system analysis. However, making the system diagram has been so far done by man power. It not only takes a lot of time to make a drawing for large-scale power system, it but also may cause a mistake. This paper proposes a supporting system for drawing the system diagram by applying a method for the automatic placement of nodes using genetic algorithm.

We construct a prototype system available for not only automatic drawing but also editing and modifying diagrams. In addition, since we assume that the proposed system utilizes computation resources on Internet, the proposed system is expected to run on different operating systems through graphical user interface (GUI). To realize this, a prototype system is developed by JAVA language and is designed by design pattern technique that enables to record, reuse, and represent recurring design structures and associated design experience.

キーワード：系図, 自動描画, 遺伝的アルゴリズム, デザインパターン
Keywords: power system diagram, automatic drawing, genetic algorithm, design pattern

1. はじめに

近年、コンピュータの著しい性能の向上に加えネットワーク環境の進歩は、電力系統における解析実行環境を変えるつつある。これまでに、特定の計算機上で有機の環境に構築された潮流計算や故障計算などの計算資源は、その利用を熟練した技術者に限定していた。しかしながら、インターネット環境が整備された現状では、系統運用に携わる様々な部門の技術者が、熟練した技術者と同レベルの解析を実行できる環境が望まれている。その中で、GUIを利用したマンマシンインターフェイスは、解析環境を改善するのならず、解析結果の理解を容易にするもので非常に重要である。

ここで、解析プログラムの実行環境における問題点を挙げると以下のようにある。

（1）テキストファイルによるデータ管理：各解析プログラムには固有のデータフォーマットを持っているため、その作成及び修正は、そのプログラムに関するかなりの知識が必要となる。

（2）コマンドラインでの実行環境（非グラフィカルインターフェイス）：ファイルの設定やパラメータの設定などが必要であり、複数の解析プログラムを連携して活用する場合の障害となる。

（3）実行環境が異なる：実行環境が異なると、解析プログラムの操作性も異なるため、統一した操作性を望めない。

このような解析環境の問題点を解決するために、①マウスを用いた対話型のインターフェースを持つ統一的な操作環境、②解析データを各プログラム用のデータフォーマットで出力する機能、③系図作成支援機能、④インターネット上で実行機能を備えた統合型解析システム、などが考えられる。この中で、系図作成は系図構成の把握を容易にするために有益であるが、テキストファイルに記述されている接続データを基に、線路交差を少なくし、バランスよくノードを配置することは大きな労力を必要とする。

一般に系図作成は、グラフ理論における一般無向グラフ
分類され、この種のグラフに対するノードの自動配置方法がこれまでにいくつか提案されているが、その理由として、複数の関連性が小さいため、いわゆる見栄えの良いグラフ描画手法を用意しているため、そのままシステムの描画に適用することはできない。

そこで本研究では、自動描画機能を備えたシステムを提案する。システムでは、システムとしての描画基準を定め、グラフ描画に使用される建築のアルゴリズムに、この基準を適用したノード自動配置を行う。加えて、GAにおけるシミュレーション時間を考慮して、高速に計算可能なスプリングモデルによる描画機能も取入れる。また、システムではシステムの種類や目的、自動による描画機能を有しており、O/S品揃いの環境で使用できるように開発言語にはオペジェクト指向言語であるJAVAを使用する。また、以下の2章では提案システムの概要について述べ、3章をもって自动生成に使用したGA及びスプリングモデルについて説明する。4章では、自動描画に関するシミュレーションを行い、その結果と解の改善方法について記述する。最後に5章では、提案システムのプラクティスシステムの主な機能と、オペジェクト指向言語の特長を生かしたデザインパターンによる設計について説明し、実係例を併せて示す。

2. 提案する自動描画システム

図1に本研究で構築した電力系システム作成支援システムの概要を示す。提案システムは、基本の要素として電力系統解析の基本ツールである潮流計算のために用意された接続データを用いる。このデータは、母線の接続状態や線路リアクタンス値などのデータを持っているため、系統配置に利用可能である。接続配置を手作業で行う場合とGAやスプリングモデルを用いて自動配置を行う方法が用意されている。加えて、系統データが存在しない場合でも新規にシステムを作成するためのエディタモードも用意されている。系統図の表示において、母線と線路に加え、系統解析シミュレーションで用いられる以下の要素についての表示を行うことができる。

(i) 母線に接続される機器：発電機、調相機、負荷、電力用コンデンサ（SC）
(ii) 線路要素：送電線、変圧器タップこれらの記号表示には以下の2つの点を考慮する。
(a) 各線路はそれぞれ交差が生じないように、相対的な位置関係を考慮して接続する。
(b) 表示要素は各母線の上下の線路数を考慮してバランスを保つように接続する。

例えば図2(a)に示すように、上記規則を適用して線路および記号の接続位置を計算し、上下に接続されている接続線路数を考慮して自動的に接続する。また提案システムでは、表示に関して簡易表示と詳細表示の2つの選択が可能である。図2(a)は接続状態を示した簡易表示で、図2(b)は詳細接続図に対する詳細表示である。したがって、自動配置により作成されたシステム図は、適用者が100%満足する図を得ることは困難である。そこで、本システムでは系統図の修正を行うために母線の移動、線路修正、母線編集などの機能を備えている。

3. ノード自動配置

系統図自動描画は、グラフ理論における一般無向グラフのノード配置問題を提案するためのものである。これまでの研究で報告されているグラフ描画手法で使用されるアルゴリズムを適用することが可能である。その中で本システムでは、GAに着目し、系統図のノードの配置に適用する。以下では、提案システムの母線と線路をグラフ理論におけるノードとエッジに対応付けて説明する。

(3-1) データ基準 提案システムでは、系統図のためのノード自動配置基準として、以下のような基準を定めた。

(1) 各エッジの長さをできるだけ実際の線路長に対応付ける。
(2) エッジの交差を最少にする。
(3) 同一ノードに接続されたエッジ間の角度を指定した値に配置する。

系統図においても一般グラフと同様に線路交差が少なくなるように母線配置を行うことによって、見やすい系統図を得ることができる。また線路の長さは、線路リアクタンス値に比例するので、系統データから線路の長さを設定することができる。基準は、ノードの水平・垂直方向
（4方向）、またはそこから45°の方向（8方向）に線路を接続することによって、系統図として示す形となる。しかしながらこれらの基準は、エッジの交差点が無くなるようにノードを配置することを除き、エッジの長さや角度が変わってしまうと言う形にトレードオフの関係にあるため、全ての基準を完全に満足することはできない。

（3.2）GAの適用 本システムで使用したGAは、初期集団の生成を行った後、個体の評価（適応度の計算）、選択（エリート保存戦略）、交叉、突然変異を1世代とする遺伝操作を適応度の高い個体を増殖させるために繰り返すもので、一般的に利用されているアルゴリズムと同じである。使用した遺伝子型は、10進数で表現されたノードのx, y座標ベクトル ((x1, y1), (x2, y2), ..., (xN, yN)) で構成される。ここではNはノード数を表している。

（1）適応度 前節の描画基準に対応する適応度を各個体に対して計測するため、エッジの平均誤差とエッジ角度の累積誤差を以下のように定義する。

① エッジの平均誤差 \(\alpha \)
\[
\sigma = \frac{1}{|E|} \sum_{e \in E} \left(\frac{|e| - L}{L} \right)^2
\]
ここで、|E|：エッジ長、L：実際の線路長、|E|：全エッジ数

② エッジ角度の累積誤差 \(\Delta \)
\[
\Delta = \sum_{v \in V} \sum_{k=1}^{N_v} (\sin(\phi_k(v) \times d))^2
\]
ここで、v：ノード、N_v：ノードvに接続されるエッジ数、d：角度定数、\(\phi_k(v) \)（k = 1, ..., N_v）：ノードvのエッジkにおけるx軸からの角度 [rad]

角度定数dは2（または4）としたとき、x軸からの角度が90度（45度）の位置にエッジが接続される場合に誤差が最も小となる。

最終的に適応度fは、各基準の線形結合を次式のよう

\[
f = \frac{a}{\alpha} + \frac{b}{\chi + 1} + \frac{1}{\chi + 1}
\]
ここで、\(\chi \)：エッジの交差点数、a, b, c : 3つの基準に対する重要度を調節する係数である。特に本研究ではエッジ交差点を解消することを重視しているので、bの値を他に比べ大きく設定する。

（2）交叉と突然変異 本システムでは一点交叉、一様交叉、凸包交叉の3つの交叉を利用した。一点交叉では2つの親の遺伝子型をランダムな位置で一本所切断し、その切断部分を入れ替えることによって子孫の遺伝子型を作成する。つまり交叉はランダムに複数の位置で切断し、その部分の座標を入れ替えることによって子孫の遺伝子型を作成する。一方、凸包交叉とは、交叉によって生まれる子孫の中のどのノード座標をもその親となる2つのノード座標の線形組合せによって得られる交叉である。例えば、\((x_1, y_1) \) と \((x_2, y_2) \)が2つの親ノードの座標と仮定すると、凸包交叉によって得られる子孫のノード座標を \((X, Y) \)とする。\(X, Y \)はそれぞれ親座標の平均 \((x_1 + x_2)/2, (y_1 + y_2)/2 \)、

分母 \(a_{max} \) の正規乱数で与えられる。凸包交叉によってグラフ全体が早め段階で局所解に収束してしまうことを避けることが期待できる。

また突然変異は、\((x, y) \)が突然変異前のノードの座標とすると、変異後の同じノードの座標 \((X, Y) \)は \(x \)と\(y \)のそれぞれの値に平均0、分散 \(a_{max} \)の正規乱数を加えた値となる。この突然変異の操作は、凸包交叉と非常に類似しており、その主な違いは交叉の場合は2つの親ノードの中間座標を用いることである。

（3.3）スプリングモデルの適用 スプリングモデルは、最短経路グラフにおける力指向配置の一種であり、ノードを基とするリンクがエッジを力学系で形成されるパネで置き換える。このとき、各ノードに適当な初期配置を与え、各リンクにかかるパネの力の合計が系全体で最小になるような配置を求める。本システムではエネルギーを以下のように定義した。

\[
E = \sum_{v_i \in V} \frac{1}{2} k_i (\|c(v_i) - c(v_j)\| - l_{ij})^2
\]
ここで、\(V = \{v_1, v_2, ..., v_N\} \)：ノード集合、\(c(v_i) \)：ノードv_iの座標位置、\(k_i \)：ノードv_iとv_j間のパネ定数、\(l_{ij} \)：ノードv_iとv_j間の理想距離で系全体の線路長に対する値

適応したエネルギー最小化アルゴリズムは付録に示す。このモデルの特徴は、エッジ交差点を最小にする等の描画基準を明示的に設定することはできないが、GAに比べて極めて高速に解を得ることが可能である。また、力学的な均衡によってエッジ長が一定の値を維持するため、適当にバランスのとれたノード配置を、ノード数の少ないグラフに対してはエッジの交差点が少なくなることが期待できる。

4. 自動配置の適用例

（4.1）GA 交叉方法による配置結果の違いを検討するため、ノード数16、エッジ数23のデータを作成し、GAを適用した結果を図3に、このとき使用したパラメータを表3にそれぞれ示す。作成したデータはエッジ長が平均で、ループ状新規となるように作成している。角度定数は2（90度部）、描画基準の重み係数をa = 0.04, b = 0.80, c = 0.16に設定した。図3の(a)～(c)より、どの交叉方法においてもエッジ交差点のないノード配置が得られたが、凸包交叉による配置結果で適応度が最も良く、手法論による配置に最も近かった。図4は世代毎の適応度の変化を示すグラフである。例として挙げたグラフは比較的単純な構成であるので、交叉方法による差が殆どなく早い世代で解が収束していることが分かる。

次に図5(a)に示すような39母線系に対する、角度定数は4、重み係数はa = 0.02, b = 0.80, c = 0.18に設定
図３ GAによる配置結果

Fig. 3. An example of automatic drawing 1 by GA.

図４ 適応度の推移

Fig. 4. A fitness graph by three crossovers.

表１ GAのパラメータ

Table 1. Parameters in GA.

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期頂点位置</td>
<td>random</td>
</tr>
<tr>
<td>世代数</td>
<td>10,000</td>
</tr>
<tr>
<td>各体数</td>
<td>100</td>
</tr>
<tr>
<td>選ばれる個体数</td>
<td>2</td>
</tr>
<tr>
<td>交叉確率: Uniform</td>
<td>30%</td>
</tr>
<tr>
<td>交叉確率: Convex Hull</td>
<td>15%</td>
</tr>
<tr>
<td>マウント確率</td>
<td>100</td>
</tr>
<tr>
<td>平均変動: Vmax</td>
<td>100</td>
</tr>
<tr>
<td>平均変動: Vmin</td>
<td>100</td>
</tr>
</tbody>
</table>

図5 39路線系統

Fig. 5. New England 39 buses system.

してシミュレーションを行い、図5(b)に凸包交叉による配置結果を示す。このケースではGAのパラメータと重み係数の値を様々に調整したが、どの交叉方法でも交叉の解消が難しく、凸包交叉が他の交叉方法よりも優れた適応度を得ることができた。

GAによるノード配置では、エッジが1本のみ接続されるノードが多いとき、描画基準を満たす配置結果が得られない傾向にある。そこで、入力として使用するシステムデータに対して以下のよう考察を考える。

(1) エッジが1本のみ接続されるノード及び、末端とな

るノードは削除する。

(2) ループを構成するエッジに位置するノードで分岐が少なく、省略しても構成が変化しないノードは削除する。

例えば図5(a)の系図に対して、上記(1)を適用してノードを10削減したときの配置結果を図6(a)に示す。このケースでは、交叉がなくなり適応度が大幅に改善され、全体としてバランスのとれた配置であるとは言い難い。そこで、この縮小系図に対して(2)を適用し、更にノードを10削減した配置結果を図6(b)に示す。元のデータに比べノード数が約半分になっていることから、交叉が解消され

930
図6 GAの縮約システムに対する配置結果
Fig.6. Results for reduced system by GA.

図7 スプリングモデルによる配置結果
Fig.7. Examples of automatic drawing by spring model.

（4・2）スプリングモデル 2つの系データに対してスプリングモデルを適用した結果を図7に示す。図4(a)はノード数43、エッジ数42の放射状系であり、交差が少なく、スプリングモデルの特徴である均衡の取れた比較的きれいなノード配置が得ることができた。また図4(b)はIEEE14母線系に対する配置結果である。この系統ではノードに対して比較的エッジが多いため、交差を生じている。

スプリングモデルによるノード配置は、放射状系に対して比較的良好な配置結果を得る一方で、ノード数に対するエッジ数の割合が大きくなると、小規模な系であっても交差数の増加など構造要素を満たさない傾向がある。

（4・3）検討 GAによる配置は、適応度で構造素を明示的に記述できるため図3に示すようにエッジ角度を設定したり、図5に示すように交差を極力解消するように調整することもある程度はあるが、しかしながら、そのシミュレーションでは系統図を表現する個体を複数用意し、世代を経すと適応度を高めていくため計算時間を要する欠点がある。例えば、ワークステーション（Ultra-SPARC II 360 MHz）で図5(b)を計算するとパラメータもよるが、54 分を要した。更に、118母線や250母線に系統規模を拡大してシミュレーションを行ったところ3時間～6時間を要した。その配置結果は線路交差が10～20箇所となるため、システムの母線配置機能を利用してこの箇所の修正する必要があった。一方、スプリングモデルによる方法では計算時間は殆ど問題となる。例えば、GAのシミュレーションと同じ計算機を使用して250母線系に適用したところ、数秒から数分で計算を終えることができた。その配置は、図7に示すように放射状あるいはループ状とはっきり区別可能なものに対しては比較的良好
な結果を得たが、図5に示すように両者が混在した系統に対してはGAによる結果よりも線路交差数が多くなる傾向にある。このことからインタラテイプに系統図を作成したい場合にはスプリングモデルの方が有利であり、GAは時間を要しても修正量を少なくしたい場合に有利である。

5. 自動描画支援システム

提案システムは、UNIXやWindowsといったOSに依存しない環境で使用することを前提にJAVA言語で構築した。本章では支援システムの主な機能とプログラミング効率の向上技術であるデザインパターン及び、実行例について述べる。

(5-1) 機能の説明

(1) 系統図自動作成 解析用系統データを選択し、接続データを読み込むことで系統図の自動作成機能が利用可能となる。GAとスプリングモデルによるノード自動配置プログラムは、実行速度の問題からC言語で開発されているため、JAVAのRuntimeクラスを使用して、図8に示すようなウィンドウによりプログラムが呼び出される。

(2) 手動作成 系統図の手動作成は系統図表示領域の任意の位置をマウスでクリックすることによって行う。この時、以下のようなモード選択ボタンによって母線の配置、線路の接続モードを選択しながら行う。

(a) 母線配置：母線配置モードを選択すると、母線タイプ設定ウィンドウが表示され、この設定ウィンドウにおいて母線に接続される機器を選択し、系統図表示領域をクリックすることによって母線が表示される。

(b) 線路配線：線路配線モードを選択し、開始母線と終端母線を指定することで線路を番号順に結線する。

(3) 系統図の修正 系統図の修正には以下のよう機能がある。

(a) 母線移動：既に配置されている母線をマウスでドラッグ＆ドロップすることによって、母線を移動させることができる。このとき、その母線に接続されている線路の接続位置は自動的に再配置される。

(b) 線路修正：系統図において線路は必ずしも一直線で表示されるわけではない。そのため、表示された線路の折れ曲がりをマウスでドラッグ＆ドロップすることによって修正できる。

図8 支援システムと外部関数呼出例
Fig. 8. Examples of executing the system and external function.

図9 デザインパターンの適用例
Fig. 9. An application of design pattern.
図10 システムの実行例

Fig. 10. An execution example of the proposed system.

(c) 母線編集：自動的に計算された各母線における接続・記号との接続位置は各接続端の接続位置の相対的関係等を考慮していないため、必ずしも十分な接続位置を与えていないとは限らない。そこで本システムでは、電極配置された母線に関して構成要素の記号および接続線路との接続位置を任意に変更することができる。

(d) 線路編集：既に表示された線路を指定することで、変換器設定ウィンドウが開き、変換器タブの有無を設定することができる。

(5-2) デザインパターンの適用 本システムをJAVA言語で構築する際、オブジェクト指向における再利用のためのデザインパターンを用いてプログラムの開発を行った。デザインパターンとは、プログラム手法をパターン化し再利用するテクニックのことで、今までに開発されてきた様々なプログラム資源を再利用してプログラミング効率を上げる事ができる。デザインパターンを用いる利点は、他のプログラムがプログラムの意味を理解しやすい、プログラムの再利用性が高いため、メンテナンス性が高いという点がある。

本システムではAbstractFactory, Composite, Iteratorと呼ばれる3つのパターンを用いている。AbstractFactoryはオブジェクトの生成に関するパターン、Compositeはグループ化に関するパターン、Iteratorはオブジェクトの継続に関するパターンである。本システムの使用例を以下に示す。

(1) AbstractFactoryパターン 発電機の接続された母線を表すクラスを作成する場合、図9(a)のように母線に共通なデータをもつ母線クラスと、発電機に特有なデータを持った発電機クラスを用意する。また、これらのクラスにはそれぞれ、母線の表示・電気機シンボルの表示機能を含む。発電機クラスは母線クラスを継承して作成される事によって、同図のように母線のデータ、発電機のデータ、ノードの表示機能を持った発電機母線クラスを作成する事ができる。

(2) Compositeパターン 図9(b)に示すように、系続の母線をグループ化するクラスを作成することによって、このシステムに対する表示や拡大・縮小といった操作をグループで一括して処理することが可能となる。

(3) Iteratorパターン このパターンを用いることによって、オブジェクトを格納する際に順序を知るための最大値を考慮する必要がある。また削除などの操作を行う場合も、格納されているオブジェクトの順序や、削除後の格納状態を意識することなく行うことができる。（図9(c)）

(5-3) 実行例 図10(a)～(c)はIEEE14母線系図の作成例である。同図(a)は潮流計算用の解析データか
らIEEE14を選択した状態である。本システムは系統データの読み込みを行うと図(b)のようなノードの初期配置が行われる。この初期配置から、母線移動機能を用いて手法による作成を行うことができる。(c)はGAを用いた自動配置結果から修正を施し、最終的な配置結果の詳細も四の表示を表している。

6. おわりに

本論文では、GAを用いたグラフの自動配置手法について検討した。系統図として見やすくするように考慮した適応度評価基準を作成しシミュレーションを行った結果、ノード数の少ないグラフでループ状のグラフでは、評価基準に沿った配置結果を得られた。このため、元データに対して系統を縮約して適応する方法を提案し、シミュレーションによって良好な結果が確認できた。また、スプリングモデルと並用によるノード自動配置手法は、解析計算用の接続データから自動的に母線配置が行われ、多くの修正を加えることによって系統図として用いることが可能であると思われる。

加えて、電力系統図の作成を効率的に行うためのプロトタイプシステムについて述べた。本システムでは解析用システムデータを用いて、数値データから系統図を作成する際の生じる誤りを防止することができる。本システムはデザインパターンを用いて作成したことにより、各解析プログラムに対応するため、各機器へのデータ追加などの拡張を比較的容易に行うことができる。

謝辞

本研究を遂行するにあたり、多大な協力をしてくれた富山大学大学院生の吉田健次氏（現：株）富士ソフトABCに心より感謝します。

(平成14年8月29日受付、平成15年3月11日再受付)

文 献

(5) 中川・松本・「ネットワークを用いた電力系統の自動配置手法」、「電気学会論文集 B号」116, 1, pp.19~56 (1996-1)
(8) E. Gamma, R. Helm, R. Johnson, and J. Vissides: Design Pattern Elements of Reusable Object-Oriented Software, SOFTBANK CORP, Japan (1995) (in Japanese)

付 録

[エネルギー最小化アルゴリズム]
Step1: 初期配置として全てのノードを適当な半径をつけて円周上に等間隔に配置する。
Step2: すべてのノードに関して

\[
\Delta m = \sqrt{\left(\frac{\partial E}{\partial x_m} \right)^2 + \left(\frac{\partial E}{\partial y_m} \right)^2} \tag{付 1}
\]

\(m = 1, \ldots, N; N:ノード数\)を計算し、\(\Delta_{\text{max}} > \varepsilon\)である間は以下の操作を繰り返す。
Step2-1 \(\Delta = \Delta_{\text{max}}\) となるノードiを選択する。
Step2-2 ノードiに対して

\[
\frac{\partial E}{\partial x_i} = \frac{\partial E}{\partial y_i} = 0 \tag{付 2}
\]

となるようなノード移動分 \(\Delta x_i, \Delta y_i\) を求め、ノードiの座標を、

\[
x_i = x_i + \Delta x_i, y_i = y_i + \Delta y_i
\]

により更新する。

川崎 慎治

(正員) 1965年7月20日生まれ。昭和63年3月三重大学工学部電気工学科卒業。平成2年広島大学大学院工学研究科博士課程前期（システム工学専攻）修了。同年4月広島大学工学部電気工学科助手。平成11年4月講師。現在に至る。博士（工学）主として、電力系統における知識処理の適用に関する研究に従事。電気学会、電気設備学会、人工知能学会、IEEE 各会員

造訪 秀文

(正員) 1971年2月22日生まれ。1995年3月広島大学大学院工学研究科博士課程前期（システム工学専攻）修了。1997年4月広島大学工学部第二電気工学科助手。2001年4月広島大学大学院工学研究科助手。現在に至る。博士（工学）主として、電気設備学会、AI学会、エネルギー学会、IEEE 各会員

佐々木 博司

(正員) 1941年3月10日生まれ。1968年3月早稲田大学理工学部電気工学科卒業。同年4月電気工学研究科修士課程（電気工学専攻）進学。同年4月早稲田大学電気工学部助教授。1980年10月早稲田大学工学部電気工学科教授。1989年11月同教授（電気工学教育科教授）、現在に至る。工学博士。主として、電力系統の過渡安定性、状態推定、最適潮流計算手法、エキスパートシステムおよびネットワークなどの人工知能の応用に関する研究に従事。IEEE、CIGRE、電気設備学会、日本電気学会、情報処理学会、エネルギー学会、資源学会会員。