電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
論文
異常値を考慮したカーネルサイズ自動調整を用いたCorrentropyに基づくANNによる翌日最大電力需要予測手法の提案
櫻井 大士福山 良和飯坂 達也松井 哲郎
著者情報
ジャーナル 認証あり

2021 年 141 巻 2 号 p. 163-170

詳細
抄録

This paper proposes daily peak load forecasting by a correntropy based Artificial Neural Network (ANN) using an adaptive kernel size method for reduction of engineering loads considering outliers. When outliers exist in the training data, estimation accuracy of daily peak load forecasting using a conventional least mean square (LMS) based ANN can be affected by the outliers. Therefore, engineers have to remove the outliers in order to improve estimation accuracy and it is a heavy burden to engineers. Although Correntropy has a possibility to solve this problem, adjustment of a kernel size has been a big challenge for correntropy. Effectiveness of the proposed method is verified by comparison with a conventional LMS based ANN using Stochastic Gradient Descent (SGD), a Correntropy based ANN using SGD with a fixed kernel size and a Correntropy based ANN using SGD with the conventional adaptive kernel size method.

著者関連情報
© 2021 電気学会
前の記事 次の記事
feedback
Top