配電系統の1線地絡故障に関する新しい
解析手法と試験方法の開発

正 員 岩 谷 高四郎（東北電力）
正 員 藤 掛 和 男（東北電力）
正 員 久保木 賢（東北学院大）

1. まえがき
中性点が非接地方式および高インピーダンス接地方式の配電系統1線地絡故障現象については、数多くの解析が試みられてきた（1）（2）。

しかし、実際の配電系統では、一般にその構成が複雑多岐で、各相対地アドミタンスに不均衡があり、常に零相回路に残留電圧があるのが普通である。このため、これまで行なわれた方法では、故障計算に用いる対地アドミタンスを正確に算出したり、実測（3）したりするのでは難しい。

また、地絡保護整流器の動試験のために行なっている人工地絡の方法（4）も、地絡用抵抗器が数種レッェトの熱を発生するために、試験装置が複雑となり作業量も多くなる。特に柱上変圧器と水抵抗器を組み合わせる方法（4）は、鉄共振の問題（5（6）や線路の温度上昇による抵抗値の変動誤差などの難点がある。

筆者らは、これらの問題を解決するため理論解析を行ない、数種の理論式を導いて、新しい解析手法を試み出した。また更に、従来の抵抗器を用いる方法に替えて、コンデンサを用いる人工地絡試験法を開発し、実証試験を行なった。その結果、新しい解析手法の正しいことと、新しい人工地絡試験法が有効であることを確かめたので、以下報告するものである。

なお、我が国の高圧配電系統は一般に、中性点非接地方式のものが多いので、まず第2章から第8章までに、中性点非接地方式について述べ、第9章に中性点高インピーダンス接地方式について述べた。また、試験用配電線と実配電系統において行なった試験記録を

Development of New Analysis and Testing Method of 1 L-G Fault Phenomenon for Distribution System. By Koshiro Inuaya, Member, Kasso Fujikake, Member (Tohoku Electric Co.) & Minoru Kuboki, Member (Tohokugakuin University).

岩谷高四郎：正員、東北電力（株）総合研究所
藤掛和男：正員、東北電力（株）総合研究所
久保木賢：正員、東北学院大学工学部

第10章と第11章に述べた。

2. 三相回路における1線地絡故障計算式

図1のような3相3線式中性点非接地系統について考える。

$$ E_a, E_b, E_c \cdots \text{対称三相電圧} $$

$$ V_a, V_b, V_c \cdots \text{各相の対地電圧} $$

$$ V_N \quad \cdots \text{中性点 N の対地電圧} $$

この場合 V_N は対称性の法の V_a と等しいので、以下 V_N を零相電圧と呼ぶ。

$$ V_{N 0} \cdots \text{各相の対地アドミタンスの不均衡により生ずる零相の残留電圧} $$

$$ I_a, I_b, I_c \cdots \text{各相の電流} $$

負荷電流はこの解析には関係ないので無視する。

$$ Y_a, Y_b, Y_c \cdots \text{各相の対地アドミタンス} $$

$$ Z_a, Z_b, Z_c \cdots \text{地絡インピーダンス} $$

以上より、いま a 相を Z_a にして1線地絡したときの電圧、電流の分布を求める。

$$ I_a = \frac{E_a + V_N}{Z_a} \cdots (1) $$

$$ I_b = Y_b (E_b + V_N) $$

$$ I_c = Y_c (E_c + V_N) $$

また、3線−1相接地アドミタンスを Y_{0a} 、またその不均衡分を Y_{00} として

Fig. 1. Voltage and current distribution at the single-phase grounding.
\[
\begin{align*}
Y_a + Y_b + Y_c &= Y_{00} = Y_{00} / \theta \\
Y_a + Y_b / -120^\circ + Y_c / 120^\circ &= Y_{00} / \theta \\
Y_{00} &= E (\alpha) / Z_e
\end{align*}
\]

となる。同様に次の (4)，(5) 式を得る。

\(b\) 相地絡で
\[
(E / -120^\circ + V_N) / Z_e + Y_{00} E + Y_{00} V_N = 0
\]
\[(4)\]

\(c\) 相地絡で
\[
(E / 120^\circ + V_N) / Z_e + Y_{00} E + Y_{00} V_N = 0
\]
\[(5)\]

(3)，(4)，(5) 式より (6) 式が成り立つ。

\[
\begin{align*}
\Delta \mathcal{A} &= \frac{V_N + Y_{00} E + Y_{00} V_N = 0}{Z_e} \quad (6)
\end{align*}
\]

ここで，\(\Delta \mathcal{A}\) は地絡相が定まる定数 \(\alpha\) で

\(a\) 相地絡で
\[
\Delta \mathcal{A} = \alpha^\circ
\]

\(b\) 相地絡で
\[
\Delta \mathcal{A} = -120^\circ
\]

\(c\) 相地絡で
\[
\Delta \mathcal{A} = 120^\circ
\]

とする。

(6) 式を変形して零相電圧 \(V_N\) を求める

\[
V_N = -E \frac{\Delta \mathcal{A} + Z_e Y_{00}}{1 + Z_e Y_{00}} \quad (8)
\]

となる。また，地絡電流 \(L_e\) を求める

\[
L_e = \frac{\Delta \mathcal{A} + V_N}{Z_e} = E \frac{\Delta \mathcal{A} Y_{00} - Y_{00}}{1 + Z_e Y_{00}} \quad (9)
\]

となる。すなわち，3 線一括結地絡 \(Y_{00}\) と各相地絡の不衡分 \(Y'00\)の系続定数が定まれば，各相が任意の地絡，各相 \(Z_e\) で 1 線地絡を生じた場合の \(V_N，L_e\) を (8)，(9) 式で求める。

3. 3 線一括結地絡 \(Y_{00}\) とその不衡分の求め方

3 線一括結地絡 \(Y_{00}\) や，その不衡分 \(Y'00\) を各配電線の構成から算出するのは非常に困難である。従って，次のように零相電圧の測定値から容易に計算で求められる方法を導いた。

地絡故障のない常時は，\(Z_e=0\) であるので，常時残存零相電圧 \(V_{00}\) は (8) 式より

\[
V_{00} = -E Y_{00} / Y_{00}
\]

となる。これより

\[
V'_{00} = -(V_{00} Y_{00}) / E \quad (11)
\]

\[
V_N = -E \frac{A + Z_e (-Y_{00} V_{00})}{1 + Z_e Y_{00}} \quad (12)
\]

\[
Y_{00} = -E \frac{A + V_N}{Z_e (V_N - V_{00})} \quad (13)
\]

を得る。

すなわち，常時の残留電圧 \(V_{00}\) を測定し，次に各相を任意の \(Z_e\) で地絡させ，そのときの \(V_N\) を測定することにより，系統の 3 線一括結地絡 \(Y_{00}\) は

\[
Y_{00} = -E (V_{00} Y_{00}) / Z_e (V_N - V_{00}) \quad (14)
\]

となる。

4. 対地地絡 \(Y_{00}\) の不平衡の許容限界

はじめに述べたように，産業運転されている実系統では，不平衡分 \(Y'00\) による零相電圧があるのが普通である。そしてその大きさは (11) 式より，

\[
V_{00} = E (Y'00 / Y_{00}) \quad (15)
\]

である。

いま，地絡保護装置の運用上，\(V_{00}，Y'00\) の大きさがどのくらいまで許容されるかを示してみる。

現状は，ある値 \((R_s(\Omega))\) 以下の抵抗地絡が生じたときに保護装置が動作するように運用されている。このときの零相電圧を \(V_N\) とすると，

\[
V_N = E ([A + R_s Y'00] / (1 + R_s Y'00)) \ldots (16)
\]

であり，また常時 \(V_{00}\) は，\(R_s\) 地絡のときの \(V_{00}\) に小さくしなければならないので

\[
V_{00} < V_{00} \quad (17)
\]

が必要である。

すなわち，(15)，(16)，(17) 式より

\[
Y'_{00} < E A + R_s Y'00 / 1 + R_s Y'00 \quad (18)
\]

を得る。

\[
1 + R_s Y'00 = M = M / \theta M \quad (19)
\]

\[
A + R_s Y'00 = N = N / \theta N
\]

とおくと，\(M，N\) は \(A，R_s，Y_{00}，Y'00\) によって，大きさが変化する値であるので，(18) 式より

\[
Y'_{00} < N\text{の最小値} \quad (20)
\]

\[
Y_{00} ~ M\text{の最大値}
\]

を得る。この (20) 式の条件を \(M，N\) の各ベクトル軌跡から求めめる。

(19) 式より，\(M\) のベクトル軌跡は図 2 のように中心 \((1,0)\)，半径 \(R_s Y_{00}\) の円の一部になる。なお \(\theta\)
図 2 $M=1+R_s Y_{00}$ のベクトル軌跡図
Fig. 2. Vector locus of $M=1+R_s Y_{00}$.

図 3 $N=A+R_s Y'_{00}$ のベクトル軌跡図
Fig. 3. Vector locus of $N=A+R_s Y'_{00}$.

は 0～π/2 である。
次に、同じく (19) 式より N のベクトル軌跡を求める。 (2) 式の $Y'_{00}=Y_{00}/\theta'$ において、θ' は Y_a, Y_b, Y_c の不均衡の状態でのどのような値でもなるので、図 3 のように A を基準ベクトルとして、中心 (1, 0), 半径 $R_s Y_{00}$ の円になる。
従って、図 2, 図 3 より (20) 式は

$$Y'_{00} \frac{1-R_s Y_{00}}{1+R_s Y_{00}}$$

(21)

$$Y'_{00} \frac{1}{1+2R_s Y_{00}}$$

(22)
となる。

つまり、電流の V_{VOT} の制限上で、Y'_{00} の許容限界は (22) 式で表される。

表 1 系統の大きさと不均衡分 Y'_{00} 許容限界
($R_s=6,600 \Omega$ として)
Table 1. System size vs allowable limit of Y'_{00}.

<table>
<thead>
<tr>
<th>I_0 (A)</th>
<th>Y_{00} (pΩ)</th>
<th>Y'_{00}</th>
<th>$Y'{00}/Y{00}$ 許容限界 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>59</td>
<td>22.4</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
<td>66</td>
<td>12.6</td>
</tr>
<tr>
<td>3</td>
<td>750</td>
<td>69</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>1,310</td>
<td>72</td>
<td>5.5</td>
</tr>
<tr>
<td>8</td>
<td>2,100</td>
<td>73</td>
<td>3.6</td>
</tr>
<tr>
<td>10</td>
<td>2,650</td>
<td>74</td>
<td>2.8</td>
</tr>
<tr>
<td>13</td>
<td>3,410</td>
<td>74</td>
<td>2.2</td>
</tr>
<tr>
<td>15</td>
<td>3,940</td>
<td>74</td>
<td>1.9</td>
</tr>
<tr>
<td>18</td>
<td>4,720</td>
<td>75</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>5,250</td>
<td>76</td>
<td>1.4</td>
</tr>
</tbody>
</table>

5. 地絡インピーダンスの種類と零相電圧の関係

(8) 式より、一つの系統条件では電流圧 V_N は地絡インピーダンス Z_r によって定まることがわかる。いま、V_N の大きさが等しくなる地絡抵抗 (R) と地絡コンデンサ (−jX) の関係を求めてみる。

$Z_r=R$ の場合と $Z_r=-jX$ の場合に同じ大きさの $V_N=|V_N|$ を発生させる条件は (8) 式より、

$$A+R_q Y'_{00} \frac{A-j X Y'_{00}}{1+R_q Y_{00}} \frac{1}{1-j X Y'_{00}}$$

(23)
となる。いま、

$$A+R_q Y'_{00} \frac{1}{1+R_q Y_{00}} = n$$

(24)

とおくと、(23) 式、(24) 式より

$$n^2 = \frac{(g'_{q0}^2 + b_{q0}^2) X^2 + 2 (p b'_{q0} - q g''_{q0}) X}{(g'_{q0}^2 + b_{q0}^2) X^2}$$

(25)

となる。従って、(25) 式より X に関する二次方程式 (26) 式が得られる。

$$(Y'_{00}^2 - n^2 Y_{00}^2) X^2 + 2 (p b'_{q0} - q g''_{q0})$$

(25)

$$n^2 b_{q0} + 1 - n^2$$

(26)
（26）式を解いて \(V_N \) が等しくなる \(R \)（抵抗）と
\(-jX \)（コンデンサ）の関係を求めるとき
\[
X = -\left(P b'_{oo} - q g'_{oo} - n^2 b_{oo} \right)
\]
\[
\pm \sqrt{ \frac{ \left(P b'_{oo} - q g'_{oo} - n^2 b_{oo} \right)^2}{ Y_{oo}^2 - n^2 Y_{oo}^2} } \nonumber
\]
\[
- \frac{ \left(Y_{oo}^2 - n^2 Y_{oo}^2 \right) (1 - n^2) }{ Y_{oo}^2 - n^2 Y_{oo}^2 }
\]
………（27）

但し，\(0 < X \)
となる。
同様にして
\[
\left| \frac{A - j X Y'_{oo}}{1 - j X Y_{oo}} \right| = m
\]
とするとき，
\[
R = \left(P b'_{oo} + q b'_{oo} - m^2 g_{oo} \right)
\]
\[
\pm \sqrt{ \frac{ \left(P g_{oo} + q b_{oo} - m^2 g_{oo} \right)^2}{ Y_{oo}^2 - m^2 X_{oo}^2} } \nonumber
\]
\[
- \frac{ \left(Y_{oo}^2 - m^2 Y_{oo}^2 \right) (1 - m^2) }{ Y_{oo}^2 - m^2 Y_{oo}^2 }
\]
………（29）

但し，\(R < 0 \)とする
を得る。

6. 地絡インピーダンスの種類と地絡電流の関係

零相電圧の場合に，これと地絡電流 \(I_x \) の
大きさが等しくなるような抵抗 \(R \) とコンデンサ \(-j X \)
の関係を求める。
すなわち，（9）式より
\[
|1 + R Y_{oo}| = |1 - j X Y_{oo}|
\]
であるよう，（30）式の両辺を平方すると，
\[
(1 + R g_{oo})^2 + R^2 b_{oo}^2
\]
\[
= (1 + X b_{oo})^2 + X^2 g_{oo}^2
\]
となり，（31）式より \(X \) に関する二次方程式（32）式を得る。
\[
Y_{oo}^2 X^2 + 2 b_{oo} X - (Y_{oo}^2 R^2 + 2 g_{oo} R) = 0
\]
………（32）

（32）式を解いて，\(I_x \) の大きさが等しくなる，\(R \)（抵抗）と
\(-jX \)（コンデンサ）の関係を求めるとき，
\[
X = -b_{oo} \pm \sqrt{ b_{oo}^2 + Y_{oo}^2 R \left(Y_{oo}^2 R^2 + 2 g_{oo} \right) } / Y_{oo}^2
\]
………（33）

但し，\(0 < X \)
となる。
同様にして，（34）式を得る。

\[
R = -g_{oo} \pm \sqrt{ g_{oo}^2 + Y_{oo}^2 X \left(Y_{oo}^2 X + 2 b_{oo} \right) } / Y_{oo}^2
\]
………（34）

但し，\(0 < R \)

7. 地絡インピーダンスの種類と地絡保護

継電器の動作

現在使用されている配電線地絡保護継電器を動作条件
によって大別すると，次の三種類になる。
（a） 零相電圧の大きさ \(V_N \) によって動作するもの
（以下，0V G という）。
（b） 地絡電流の大きさ \(I_x \) によって動作するもの
（以下，0CG という）。
（c） 上記 \(V_N, I_x \) の他 \(V_N \) と \(I_x \) の位相差を加えた，
三つの条件が満足することによって動作するもの
（以下，DG という）。

現在，一般に配電線地絡保護継電器の動作を試験に
は，抵抗器を用いて人工地絡を行ないその動作を確認
している。いま抵抗器の代わりにコンデンサを使用した
場合の，前記の三つの継電器動作条件については，次
のとおりである。

7-1 零相電圧の大きさを等しくする条件
（27）式によって所要の地絡抵抗 \(R \) に対応するよう
に，コンデンサのリアクタンス \(X \) を選ぶ。

7-2 地絡電流の大きさを等しくする条件
（33）式によって所要の地絡抵抗 \(R \)
に対応するように，コンデンサのリアクタンス \(X \)
を選ぶ。

7-3 零相電圧と地絡電流の位相差の条件
（6）式を変形して，
\[
Y_{oo} Y^* + Y_{oo} \tilde{V}_N
\]
\[
= -(A \tilde{E} + V_N) \tilde{Z}_0 = -I_x
\]
となる，ここで \(\tilde{Y}_{oo} \equiv 0 \) すると，\(Y_{oo} \tilde{V}_N \) と \(I_x \) は
180° 位相がずれている。従って \(DG \) を正しく動作させるため，
\(DG \) に加える電圧電流の積が高圧側でみて
\(V_N I_x \) となっている。

いま，\(DG \) のみの電圧と電流の位相差を \(\varphi_{Yx} \) とす
ると，
\[
\tilde{Y}_{yx} = Y_{yx} \sqrt{ \varphi_{yx} } = -I_x / \tilde{V}_N
\]
\[
= A Y_{oo} - Y'_{oo}
\]
\[
= \tilde{V}_N \tilde{Z}_0 Y_{oo} / \tilde{Y}_{oo} \nonumber
\]
\[
= Y_{oo} / \alpha + \theta - Y'_{oo} \sqrt{ \alpha / \theta' } = I_x / \tilde{V}_N
\]
\[
= \tilde{V}_N \tilde{Z}_0 Y_{oo} / \tilde{Y}_{oo} \nonumber
\]
\[
= \tilde{V}_N \tilde{Z}_0 Y_{oo} / \tilde{Y}_{oo}
\]
………（36）

と表わすことができる。そして，\(\tilde{Y}_{yx} \) が \(DG \) からみ
る高圧側のアドミタンスであり，（37）式が成り立つ。
\[
\varphi_{Yx} = \varphi_{I} - \varphi_{\tilde{V}}
\]
………（37）
配電系統の1線地絡故障の解析手法

8. 地絡回路の対地アドミタスの取扱い

いま、3線一括対地アドミタス あるいはその不均衡分 について、すべて全系分のみ考えても地絡回路自身の分は特に分けて考えなかったが、その理由は次のとおりである。

(8.1) 難相電圧について　(8) 式に示すとおり、

すなわち，

対地電流 は三相電流の対地アドミタスを図式とするため、この分だけ は に比較小きくなる。しかし、実系図においては任意の回路が停止状態中であっても十分地絡保護接続を動作させるのに対地アドミタスはだろう。もし、多い場合には変電所母線に補償用コンデンサを取付けて補償しているので問題ない。

(8.2) 地絡回路の保護接続器が検出する電流

について　地絡電流 は一部は地絡回路の対地アドミタスを図式とするため、この分だけ は に比較小きくなる。しかし、実系図においては任意の回路が停止状態中であっても十分地絡保護接続を動作させるのに対地アドミタスはだろう。もし、多い場合には変電所母線に補償用コンデンサを取付けて補償しているので問題ない。

(8.3) DG のみの位相 について　(40) 式に表1の および について とすると、地絡回路とDGが必要とする は検出範囲を求めてみると次のとおりである。

(1) $I_{0}=10$ A の小系統で

同様にして、(36) 式の と と と は表1の および と 成ると は 表1の 0.502 である。

すなわち、保護装置動作の条件としては常に である。

昭57-4
地アドミタンスを含めて考慮すべきはなかった。

9. 中性点高インピーダンス接地方式の配電系について

第2章より第8章までは中性点接地方式の系について述べたが、ここでは中性点高インピーダンス接地方式の系について述べる。

図8は図1の回路の中性点にZ_Nを接続した回路図である。なお、Y_a, Y_b, Y_c, Z_a, Z_b以外の回路定数は無視できる系である。

図8と(6)式より
\[
I_a + I_b + I_c = I_N \tag{43}
\]

\[
\frac{A E}{Z_a} + \frac{V_{N}}{Z_a} = -\frac{V_{N}}{Z_N} \tag{44}
\]

となる。ここで、
\[
\frac{1}{Z_N} = Y_N \tag{45}
\]

表9と(45)式より
\[
Y_N = -E \frac{A + Z_a Y_{oo}}{1 + Z_a (Y_{oo} + Y_N)} \tag{46}
\]

を得る。

更に、
\[
Y_{oo} + Y_N = Y_{oo} \tag{47}
\]

すると、
\[
Y_N = -E \frac{A + Z_a Y_{oo}}{1 + Z_a Y_{oo}} \tag{48}
\]

となる。同様にして
\[
I_a = E \frac{A Y_{oo} - Y_{oo}}{1 + Z_a Y_{oo}} \tag{49}
\]

を得る。

(48), (49)式は中性点接地方式のときの(8), (9)式においてY_{oo}の切り替えにY_{oo}を用いたものではない。すなわち第2章より第8章まで述べたことは、中性点インピーダンス接地方式の系で、$Y_N = 0, Y_{oo}$= 0 として扱ったものである。

つまり、Y_{oo}を用いることにより中性点インピーダンス接地方式系の解析ができる。

10. 試験用配電線を用いた試験記録

東北電力総合研究所の6kV三相3線式試験用配電線を使用して、コンデンサ接地および抵抗接地を行ない、零相電圧、接地電流などを測定した。そしてその測定結果を前述の第2章、第3章、第5章、第6章で導いた計算式によって求めた値と比較した。

(10-1) 人工地絡試験回路と試験方法 図9の回路において、コンデンサを用いてY_a, Y_b, Y_cとした。なお、$Y_a = 1/1,470$, $Y_b = 1/1,590$, $Y_c = 1/1,740$である。従ってこの回路では、
\[
Y_{oo} = 1, 580 \\
Y_{oo} = 90.1 / 59.9 \mu F \tag{50}
\]

である。また、基準電圧$E = E_a$の代わりに、1線地絡によって影響されない瞬間電圧V_aを用いて試験の便宜上の基準とした。

試験の手順としては、Z_aとして4種類のコンデンサで地絡させ、そのときのV_a, I_aを読む。次に抵抗器と6kV変圧器で地絡させ、コンデンサ地絡のデータとV_aが等しくなる抵抗値I_aが等しくなる抵抗値をそれぞれ求め、計算値と対比した。また、測定値V_{oo}, V_Nより(11), (14)式によって求めたY_{oo}とY_{oo}と、コンデンサ定格値より求めた値((50)式のY_{oo}とY_{oo})を対比した。

(10-2) 試験結果 試験記録表1, 表2より次のことがいえる。
表 2 試験用配電線人工地絡試験結果
Table 2. Test results of artificial grounding on the test distribution line.

<table>
<thead>
<tr>
<th>地絡インピーダンス (Ω)</th>
<th>地絡抵抗 (Ω)</th>
<th>電絡抵抗 (Ω)</th>
<th>電絡電圧</th>
<th>電絡電圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>コンデンサ (Ω)</td>
<td>メンシ</td>
<td>電絡電圧 (Ω)</td>
<td>電絡電圧 (Ω)</td>
<td>電絡電圧 (Ω)</td>
</tr>
<tr>
<td>9,554</td>
<td>0.36</td>
<td>1,079</td>
<td>179</td>
<td>151</td>
</tr>
<tr>
<td>6,399</td>
<td>0.53</td>
<td>8,650</td>
<td>314</td>
<td>121</td>
</tr>
<tr>
<td>4,777</td>
<td>0.60</td>
<td>6,100</td>
<td>476</td>
<td>115</td>
</tr>
<tr>
<td>1,911</td>
<td>0.68</td>
<td>4,950</td>
<td>447</td>
<td>106</td>
</tr>
</tbody>
</table>
| 11. 実験における試験結果
昭和55年11月28日、6kV配電線8回線を供給する東北電力管内変電所において、実系
用人工地絡試験を行なった。そして試験用配電線の場合と同様に測定値と計算値を対
比した。

（11-1）人工地絡試験回路と試験方法
図9の試験測定回路をそのまま実施に接続し、第10章で述べた試験用配電線と
同一方法で試験を行なった。

なお、コンデンサ用スイッチを閉じたときの投入サージを抑制するため、保護抵抗 R = 50Ω を
接続した。この値は測定値を取得するうえで無視できるものである。

（11-2）試験結果　実施による人工地絡
試験を行なった結果は表4のとおりである。

測定値 VNy = 74.5V、Zr = -j1,911Ω で a 相地絡のときの VN = -j1.72V より (11) 式を用いて求めた

Y_0 = 2,650 / 85.7° U と

Y'_{0e} = 53.3 / 143.7° U となる。

(51) 式の Y_0 および Y'_{0e} を用いて、地絡インピーダンス R と X について、I_0 が等
しくなる関係および V_N が等しくなる関係を計算したが、その結果は表4に示すように測

昭57-4 <60>
表 4 実系統人工接地試験記録

Table 4. Test results of artificial grounding on the operation distribution line.

<table>
<thead>
<tr>
<th>地絡相</th>
<th>地絡インピーダンス</th>
<th>地絡抵抗 (Ω)</th>
<th>地絡電流</th>
<th>電源電圧</th>
<th>電源電圧</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>地絡インピーダンス</td>
<td>設定値 (A)</td>
<td>計算値 (B)</td>
<td>地絡電流</td>
<td>電源電圧 (V)</td>
</tr>
<tr>
<td>a</td>
<td>6.390</td>
<td>6.700</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>6.390</td>
<td>6.710</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>6.390</td>
<td>6.710</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td>b</td>
<td>4.777</td>
<td>5.360</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>4.777</td>
<td>5.110</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>4.777</td>
<td>5.110</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td>c</td>
<td>4.777</td>
<td>5.360</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>4.777</td>
<td>5.110</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>4.777</td>
<td>5.110</td>
<td>0.16</td>
<td>0.83</td>
<td>426</td>
</tr>
</tbody>
</table>

定値とよく合致した。
すなわち、実系統試験でも、本論文で述べた解析手法と試験方法が正しいことを実証した。

12. むすび

以上述べたように、筆者らは中性点非接地方式および中性点高インピーダンス接地方式の配電系統において、各相対地アドミタンスの不均衡を考慮した1線地絡現象について新しい理論解析を行なった。そして更に、従来の抵抗器に代えてコンデンサを用いた人工地絡試験法を開発した。そして、試験用配電線、および実系统において人工地絡試験を行なって、理論と試験法の妥当性を実証した。以下、その結果を要約する。

（12-1）新しく導入計量式 従来の不均衡分 (Ȳ̂, Ē̂ + Ȳ̂, Ē̂ + Ȳ̂, Ē) を Ȳe とおくこと、また地絡相に関する定数 A を用いることにより計算が非常に簡略になり、次の各計算式を新しく導くことができた。

（1）任意の相の1線地絡時等相電圧を求める式

（2）同じ地絡電流を求める式

（3）3線1相対地アドミタンスを求める式

（4）各相アドミタンスの不均衡分を求める式

（5）保護装置運用上、許容限界のアドミタンス不均衡分を求める式

（6）発生する等相電圧の大きさを等しくする地絡抵抗 RΩ と地絡コンデンサ XΩ の換算式

（7）地絡電流の大きさを等しくする地絡抵抗 RΩ と地絡コンデンサ XΩ の換算式

（8）地絡保護線電流がみる等相電圧と地絡電流の相角の範囲を表す式

（12-2）コンデンサによる人工地絡試験法

（1）変動誤差がない。

（2）鉄振動心配がない。

（3）装置の取扱いが容易で安全性が向上する。

以上、本研究について述べたが、最後に、この研究に対していたる御協力頂いた東北電力台所保険所、同名町台所の所員の方々、その他関係各位に、厚く感謝の意を表すものである。

（昭和56年7月24日付、同56年11月6日再受付）

文献

1. 大野木: 「配電線における断線接地故障の検出」電気学会誌 74, 795（昭和29－13）
2. 釜川・飯田: 「配電線による雷害中性点電位の解析」 電気学会誌 74, 794（昭和29－14）
3. 進藤・小野: 「配電線の接地点線路定電流型と集中流速起動」 電気設備現場試験マニュアル（昭和43-7）電気学会
4. 北川: 「配電線接地故障器の人工地絡試験の改善」 電気技術研究 48（昭和50-10）
5. 北川: 「変圧器に配電線を接続した場合の異常現象」 電気技術研究 47（昭和49-3）
6. 中原・下山: 「配電線接地試験用変圧器の開発」 九州電力研究 49 (昭和53-3)