電力系統の分散形態推定

東京芝浦電気株式会社
石井 晃
東京工業大学
深尾 淳

1. まえがき
電力系統のオンライン状態推定問題については、既に多くの議論がなされているが(1)〜(4)，その大部分はシステムの各所からある時間にわたる情報を1箇所の推定機構に集めてすべての状態を一括して推定する集中的な方法で論じている。この方法ではシステムの規模が大きくなるにつれて、次のような困難が伴う。

(1) 推定機構の構造として計算上の"複雑さ"は急激な增大
(2) 通信回路の回線数、さらなる急激な増大と情報の信頼性低下

(1)項の問題点解決にはいくつかの方法が提案されている。たとえば、回路網の疎さ(Sparsity)を利用して計算量、必要メモリ数を削減するもの(5)や、分解法を活用するものなどである(6)。しかし、(2)の問題点は集中方式では避けられない欠点である。すなわちに不良データ除去という手段で信頼性の低下を防ごうとする難しさがある。

これに対し、いくつかの部分的推定機構を設けて、それぞれに部分的な状態の推定をまかせるという分散型（decentralized）方式によれば、(1)，(2)項いずれの問題点をも解決しうる。それらの部分的推定機構はそれぞれの分担範囲（サブシステム）からの情報と、部分的推定機構間の情報交換によって推定を行う。その情報交換の仕方は様々である。特別な場合として集中型、階層型を含むが、一般には推定の精度は集中型のそれより若干落ちるのはやむを得ない。しかし、(2)の問題点は大規模系統では実際に本質的な問題で、完全な集中型は理想的な条件のもとでは精度が多少よくても、(2)項のため実現不可能に到するのである。

本文では分散型推定方式を、分散系の理論であるチーム理論(7)を用いて定式化し、それを例題に適用した結果について述べる。ここでは情報交換の方式は固定し、したがって、単に分散方式での程度集中方が推定することと仮定し、制御を含めた問題に適用可能であること、通信方式の選択、信頼性を含めた問題へ拡張可能であることなどの利点がある。

2. チームの理論
複数の制御（決定）者が共通の利益を追求してそれぞれ行動を行なうとき、それらをチームと呼ぶ。チームの問題は、観測、チーム・メンバ間の通信、決定に要するコストなどをチームの利益から差し引いたものが、平均的に最大になるような行動を分担、観測、通信、決定方式を定める問題である。即ち、システム全体を一つの制御者が制御することができれば、あるいは経済的に困難な場合の分散に制御方式を定めるわけが、各制御者がそれぞれ別個に分散形（非集集中）の制御を行う。最も簡単な場合として、観測、通信、決定に要するコストを無視し、チームの利益関数に条件を付ければ、最適な制御が、各々の制御者が各々の立場から利益関数を最大化することにより得られることが次のように示される。ここでは各制御者への仕事の分担、観測通信機構は既に定められているものとする。チームを構成する制御者の数をn, i番目のメンバの行う制御をωi, i番目のメンバが未知の環境下（外乱変数とする）について直接または他のメンバからの通信などにより受けとる情

Decentralized State Estimation in Power System. By S. ISHII, Member, (Tokyo Shibaura Electric Co. Ltd.) & T. FUKAO, Member (Tokyo Institute of Technology).

昭 50 3 (49)
報 y_i は

$$y_i = y_i(x) + v_i$$

とおらわされるものとする。 (1) をメンバのもつ情報構造と呼ぶ。 v_i は情報関数と呼ばれ、$v_i = (y_1, \ldots, y_n)$ とする。 v_i は直線をあらわす。

情報の各項によって御制は異なりうるから、御制 a_i は決定関数 a_i により

$$a_i = a_i(y_i)$$

とあらわされる。 $a_i = (a_1, \ldots, a_n)$, $a_i = (a_1, \ldots, a_n)$ とする。

利益関数

$$\omega(x, a)$$

とし、x の事前分布、凝縮の分布に対するこの期待値を Q とする。即ち

$$Q(y, a) = E[\omega(x, a(y + v))]$$

ここで

$$a_i(y(x) + v) = (a_1(y_1(x) + v_1), \ldots, a_n(y_n(x) + v_n))$$

ある情報関数 y に対して Q を最大にする a を \hat{a} とおらわし、最適決定関数と呼ぶ。ある y に対して p.b.p. (person-by-person-satisfactory) 条件を満たす決定関数 $\hat{a} = (a_1, \ldots, a_n)$ とおらわし、

$$\omega(\hat{a}) = \max Q(\hat{a}_1, \ldots, \hat{a}_{i-1}, \hat{a}_i, \ldots, \hat{a}_n)$$

がすべての i について成り立つものをいう。

メンバ i に情報 y_i が与えられたときに御制 a_i を採用するときの利益の条件付期待値を

$$\Psi_i(a_i, y_i) = E[\omega(x, a_i(y_i))]$$

と置く。 \hat{a} なる決定関数が p.b.p. 条件を満たすための必要十分条件は、すべての i に対し $a_i(y_i)$ が $\Psi_i(a_i, y_i)$ を最大にして、すなわち

$$\Psi_i(\hat{a}_i(y_i), y_i) \geq \Psi_i(a_i(y_i), y_i), \forall i$$

であり、もし \hat{a} が実数値関数で Ψ_i が a_i について微分可能であれば

$$\frac{\partial \Psi_i(a_i, y_i)}{\partial a_i} \bigg|_{a_i = \hat{a}_i(y_i)} = 0 \forall i$$

が必要である。

更に \hat{a} が最適決定関数 \hat{a} と等しくなる必要十分条件は a_i を実数値として、ω が a_i について四価関数である事である（微分可能性を前提にして）。

3. 電力系統の状態推定への応用

上述のチームの理論を電力系統の状態推定問題に適用する。そのため、今まで制御というってきた a を系の状態推定値 X に、環境 x を未知の状態変数 X, 即ち各ブスでの電圧の大きさと位相角に対応させる。したがって、決定関数 a は情報 y の関数としての推定値 $\hat{X}(y)$ を意味する。

系のブス集合を地理的に n 個のブス （サブシステム）に分割し、各ブスをそれぞれかのブスに属させる。これに対応して状態変数ベクトル X を n 個のサブ・ベクトルに分解する。即ち

$$X'(X'^{(1)}, X'^{(n)})$$

となり、$X'^{(i)}$ を i 番目の推定機構が推定する。i 番目の推定機構がもつ情報構造（観測量の構造）は

$$y'^{(i)} = f'^{(i)}(X') + v'^{(i)}$$

と文接される。利益関数を次の標に定める。

$$\omega(X, X') = -\|X - X\|^2$$

$$\omega(X, X') = -\|X - X\|^2$$

これを、X について関数可能な関数関数となり、p.b.p. 条件を満たす決定関数と最適決定関数は一致する。したがって条件付期待値 Ψ_i によって最適決定関数を定めることができる。最適推定値を $\hat{X}(X)$ 同様サブ・ベクトルに分解されると言える。

$$\Psi_i(\hat{X}'(X'), y'^{(i)}) = -E[\Psi_i(X', X + \hat{X}'(X'), \hat{X}'(X'))$$

$$\hat{X}'(X') + \hat{X}'(X') \hat{X}'(X')$$

$$\hat{X}'(X') + \hat{X}'(X')$$

これを、$\hat{X}'(X')$ で微分して 0 とおくことにより最適推定値 $\hat{X}'(X')$ は

$$\hat{X}'(X') = E[\hat{X}'(X') \mid y'^{(i)}]$$

と求まる。

一般にこの計算は容易ではないが、次の二つの仮定をおくと容易に計算できる。すなわち、第 1 に X の事前分布は正規分布で、その平均値は \hat{X}, 共分散行列は S であるとする。これらも X の分解に応じ
電力系の分散形態推定

4. 計算上の注意

4.4 有効な事前情報 （13），（14）式において，原理的には \(X^{(i)} \) の推定に \(\bar{X} \) 全体，\(S \) 全体が必要である．しかし，\(X^{(i)} \) の直接関係の観測量は i ブロック内の潮流及び注入電力を，他のブロックとの間のタイライクの潮流，注入電力に限られる．したがって，\(H^{(i)} \) については，主に \(H_i^{(i)} \) に非零要素が集まるため，（13），（14）式の \(\sum S^{(i,j)} H_{ij}^{(i)} \) の項において，\(S^{(i,j)} (j \neq i) \) は太ライラインによって結ばれているブロックに対するわずかな要素のみが有効に働くにすぎない．本文では分散形態の立場から \(S^{(i,j)}=0 (i \neq j) \) としたので，i ブロックの推定機構には他の \(j (\neq i) \) ブロックの分散行列 \(S^{(i,j)} \) の中，i ブロックとライラインで結ばれているブロックに関する要素のみが関係する．一方，（4.4）節で述べる情報交換を行なう場合には，太ライライン潮流，太ライラインへの注入電力（即ち \(X^{(i)} \)，\(j \neq i \) が影響を与える観測量）の観測は不可欠である．

4.2 逐次修正法 （13），（14）式で，観測量の数に等しい次元の行列の逆を求める必要があり，計算が危険化するものである．そこで，観測量を少量得ることにこの式で修正を加える逐次修正法によって計算を行なえば，計算が容易になることはよく知られている．即ち，i ブロックの観測量 \(y^{(i)} \) を \(m \) 個のグループ \(y^{(i)}(k) (k = 1, \ldots, m) \) に分けて計算するには，（12）式と同様に

\[
y^{(i)}(k) - y^{(i)}(k) = H^{(i)}(X-X_0) + v^{(i)}(k) \quad \ldots (15)
\]

と線形近似し，\(v^{(i)}(k) \) の分散を \(R^{(i)}(k), v^{(i)}(k) \) と \(v^{(i)}(k) \) の共分散を 0 として

\[
\mu^k = \mu^k - \frac{1}{n} \sum_{j=1}^{n} S_{k-1}^{(i,j)} H_{ij}^{(i)} \quad \ldots (16)
\]

\[
\sigma^k = \sigma^k - \frac{1}{n} \sum_{j=1}^{n} S_{k-1}^{(i,j)} H_{ij}^{(i)} \quad \ldots (17)
\]

なる繰り返しを \(k = 1 \) からはじめて \(k = m \) まで行なえば

\[
E(X^{(i)}) | y^{(i)} = \mu^m
\]

\[
S_{k}^{(i)} = \sigma^m
\]

となる．ただし，\(\mu^0 = X_0, \sigma_0 = S, \sigma(k=0) = S \) は \(S^{(i,j)} \) 部分を \(\sigma^0 \) で置き換えたものである．i ブロックの初期値，\(k \) は観測量のグループ分けによる繰り返し（全部で \(m \) 回の）番号である．

本文では観測量は主に電力を用いるが，1 群（有効分と無効分）の注入電力，ライライライン潮流ごとに逐次修正を行う．また，電圧の大きさの観測においては，一つの観測量ごとに修正を行なう．

4.3 線形化反復法 以上のように計算した，\(\hat{X}^{(i)} \) 及びその誤差共分散は，（12）式の線形モデルの上の近似で，\(X^{(i)} \) の推定値及び共分散となっているが，実際の電力系統のモデルは観測値として電力を用いるため線形ではなく，\(\hat{X}^{(i)} \) には上述の共分散で示されるものの他に誤差が加わってくる．この線形近似のための誤差は一般に真の値に近い \(\hat{X} \) が得られれば，小
数値計算例

(5-1) 12 ブス回路の例

第 2 図に示す回路での数値計算例を示す。X の事前情報として平均値 \(\bar{X} \)、電圧の大きさ及び位相角について、それぞれ 1.04、-0.12 を、また、共分散行列 \(S \) は電圧の大きさ及び位相角についてそれぞれ 0.002、0.015 の対角行列を用いている。観測値は各ブロック内のすべての注入電力、ライン潮流の有効成分、無効成分、観測雑音の標準偏差は観測値の 2% と 2 × 10^{-4} のいずれか大きいほうをとる。なお、スラックブスはいずれのブロックにも属さず、また、スラックブスでの注入電力、潮流は観測値として用いない。

分野 \(\mathcal{A} \) では、第 1 ブロックにはスラックブスが含まれており、第 2 ブロックには含まれていない。特殊情况

他のブロックにおいては、スラックブスはいずれのブロックにも属さない。}

第 2 図に示す回路を対象に、スラックブスの分野

第 1 図 5 ブスシステム回路及分解

Fig. 1. 5-bus sample system and its decomposition.
は位相角の推定値を、それぞれ集中形の誤差も示している。スラックブロックを含む第1ブロックでは集中形の場合と同程度の誤差を推定できており、したがってこの値を示される誤差は線形近似に基づくものと考えられる。スラックブロックを含まない第2ブロックでは分散形によっても小さな誤差が加わっており、これは式(20)の事後共分散行列 \(S_n^{(2)} \) によっても予想される。また、この誤差は電圧の大きさ、位相角各々について、ブロック内の全ブロックについてほぼ同様程度の大きさであることが注目される。これにより式(20)によって推定される結果である。

次に、(19)式の情報交換なしの線形化反復及び(20)式の情報交換を伴う線形化反復を行なった場合の収束の状況を第4図、第5図に示す。これら図では各ブロックの一つのブロックがみ示した場合、他のブロックについても同様な傾向がある。第4図は第1ブロック内のブロック9について示したもので、推定値は電圧の大きさ、位相角とも情報交換の有無にかかわらずわずかな反復回数ではほぼ真値に収束している。これに対して第5図にブロック6について示すように、第2ブロックでは電圧の大きさの推定値は真値に向いているが、情報交換によっても容易に収束しない。

一方、位相角の推定値は情報交換によって真値への収束が見られる。これら位相角は各ブロックでの局地

Fig. 2. 12-bus sample system and its decompositions.

Fig. 3. (a) Estimation error of voltage magnitude by linear model (b) Estimation error of phase angle by linear model.

第2図 12ブステスト回路及び分割

第3図

Fig. 3.

第4図 線形化によるブロック9の状態推定値の収束

Fig. 4. Convergence of estimated state of bus 9 by successive linearization.
弁の電圧の実際の値を変更する。

(a) 本研究におけるブースの電圧の収束性の結果
(a) Convergence of estimated voltage magnitude of bus 6 by successive linearization.

(b) 本研究におけるブースの相角の収束性の結果
(b) Convergence of estimated phase angle of bus 6 by successive linearization.

第 5 図
Fig. 5.

図の説明

第 6 図 57 ブステスト回路及び分解
Fig. 6. 57-bus sample system and its decomposition.
(a) Convergence of estimated voltage magnitude of bus 39 by successive linearization.

(b) Convergence of estimated phase angle of bus 39 by successive linearization.

Fig. 7.

6. 普通

本文では電力系統の分散形態推定方式の問題における推定式を行ない、その適用可能性ならびに実行上の問題点などを二つの計算例により示した。

大規模系統においては通信システムが複雑かつ膨大になってコスト高、信頼性低下を伴う事であるが、これを考慮してはじめて分散形態推定は意味をもってくる。またそれは部分的障害に対して強いという利点をもつことも明らかである。本文では、その方法については論ぜず、分散形態における情報交換の効果、状態推定の精度、その改善策などについてのみ論じている。

系統の分割の仕方、通信方式の選択あるいは通信コストを考える問題、情報の信頼性の問題、推定のむずかしさを述べた問題への拡張発展が示される。系統分割については、そして、地理学的、組全体などの制約に基づいて自ら定まる部分もある。

昭和49年8月5日付受、同49年11月28日再受付

文 献

(4) 日本電力研究会編：「電力系統の分散形態推定方式」，1975年
(7) 日本電力研究会編：「電力系統の分散形態推定方式」，1975年
(8) 日本電力研究会編：「電力系統の分散形態推定方式」，1975年