マイクロ加工・組立用試作システム

正 員 古 田 一 吉（セイコーインスツルメンツ株式会社）

The Experimental Microfactory System for Processing and Assembling
Kazuyoshi Furuta (Seiko Instruments Inc.)

Microfactory is a novel manufacturing system, which is useful for energy saving, space saving and on-site manufacturing. We have developed the experimental Microfactory system for processing and assembling. As an example of Microfactory, the system consists of processing unit, assembling unit and conveyance unit. And the size of the system is 600mm(W) x 650mm(D) x 750mm(H). In the processing unit, a gear pattern in the diameter of 600 μm is etched and deposited by electrochemical machining on a Chromium substrate. In the conveyance unit, pallet with electromagnet, is carried by planer coils in any direction on the unit. The assembling unit consists of two micro-arms, a rotational stage and some working tools, and miniature parts assembly is accomplished in accuracy of about ±20 μm. The power consumption of air conditioning of the system is advantage to the conventional system.

キーワード マイクロファクトリー、電解加工、精密組立、省エネルギー

Keywords Microfactorym Electrochemical processing, Micro-assembly, Energy saving

1. はじめに

近年、自然環境の保護、エネルギー問題、消費者ニーズの多様化、インターネットの発達、新たなマイクロマシンの創出の要求など、製造業を取り巻く環境が大きく変化し、従来の大量生産を前提とした大型の生産システムのあり方を見直すべき時期が到来している。

例えば、省エネルギー化は生産システムを構築する上で、特に考慮すべき要素となってきている。総合エネルギー統計によれば、現代社会の重要なエネルギー源として使用されている石油は、現在の消費状況が続けば50年もしないうちに枯渇と言われている。新たな油田の開発や、燃料電池や太陽光発電などの代替エネルギー源の開発も重要な課題であり、様々な取り組みがなされているが、現在のエネルギー源の消費削減も必須の事項である。また、これは、結果的に排出されるCO₂の削減になり地球温暖化防止につながる。

消費者ニーズの多様化に伴って多品種少量向けの生産システムの必要性が高まってきている。もしごあふれる現代では、製品の性能、機能のみならず、付加価値としての新規性、個性が製品の価値を大きく左右する。また、コンピュータ制御機器の場合のように、搭載部品の性能が短期間で向上し、新製品としての期間が短くなることも多品種少量生産システムが必要となる理由である。

インターネットの発達は、生産システムのあり方に大きな変化を生じさせている。最も大きな変化は、ユーザーのニーズを反映したものづくりが求められることがある。インターネットを利用して、消費者の嗜好をとらえることが比較的出来ることである。この形態が展開すれば、家庭や家庭でユーザーのニーズを取り入れながら生産するシステムが要求される可能性が高いと考えられる。さらに、インターネットで生産設備を管理できるなら、大きな工場を有した工場設備を設置しておく必要はなく、分散型の工場が更に立つことになる。

種々のマイクロマシンを創出するためには、従来の製造による方法の構築が必要である。特に、マシロファクトリーではその対象製品のサイズは極めて小さいため、対象を動かす方法や、加工と組立を統合するなどの新たな試みが重要と考えられる。これらの要求に応えられる生産システムの一つが、マイクロファクトリーである。

以上のような観点から、新興産業の産業技術研究開発制度に基づくプロジェクト「マイクロファクトリ技術開発」では生産システムの省エネルギー化、省スペース化および小型化を前提とし、しかし、精密な加工、組立を実現できるシステムを構築するための基礎的な研究を実施してきた。

本報では、従来の小型の加工、組立システムである「マイクロ加工・組立用試作システム」の主な機能、特性とエネルギー消費量について報告する。なお、本研究
表1 担当デバイスと研究実施企業
Table.1. devices and research companies

<table>
<thead>
<tr>
<th>担当デバイス</th>
<th>研究実施企業</th>
</tr>
</thead>
<tbody>
<tr>
<td>薬品分離デバイス</td>
<td>（株）アイシン・コスモス研究所</td>
</tr>
<tr>
<td>電解加工デバイス (加工ユニット)</td>
<td>セイコーワインツルメンツ（株）</td>
</tr>
<tr>
<td>送電首絞、把持デバイス</td>
<td>（株）日立製作所</td>
</tr>
<tr>
<td>マイクロファクトリ</td>
<td>ファナック（株）</td>
</tr>
<tr>
<td>搬送ユニット</td>
<td>（株）富士電機総合研究所</td>
</tr>
<tr>
<td>環境対策デバイス</td>
<td>三菱電機工業（株）</td>
</tr>
<tr>
<td>パンチング・アラームユニット</td>
<td>（株）安川電機</td>
</tr>
<tr>
<td>（検査ユニット、回転ユニット）</td>
<td></td>
</tr>
</tbody>
</table>

は、表1に示す7社が、それぞれの主要なデバイスの開発を担当し、共同で実施したものである。

2. マイクロ加工・組立用作製システム

＜2.1システムの概要＞ マイクロファクトリの基礎研究をするために構想したシステムがマイクロ加工・組立用作製システムである。図1に示したのは、マイクロ加工・組立用作製システムの写真である。このシステムはデスクトップのサイズ（幅600mm×奥行き650mm×高さ750mm）に、加工ユニット、組立ユニット、搬送ユニットが搭載され、さらに、加工ユニット、組立ユニットそれぞれには検査ユニットが組み込まれている。

このシステムでは、システムのサイズをできるだけ小さくするため、2つの異なるアプローチを行っている。すなわち、加工ユニットで組立ユニットのように、小型化に適した方法を利用してシステムを小型化するアプローチと、組立ユニットのように、従来の方式を踏襲しながら、その構成部品を小型化することでシステムを小型化するアプローチである。なお、このシステムは、将来のマイクロファクトリの実現をめざして、精密なマイクロ加工組立がデスクトップサイズのシステムでも可能か否かということを確認することと、マイクロファクトリデバイスをシステム化する時に発生する課題とその解決策を研究するために取り上げたものである。そのため、生産対象物としてはこの点を考慮して、その製作に精密な加工、組立が必要なギャボックスを選択している。ギャボックスの外径は10mmで、その中に、0.6mmから3.6mmの歯車を組み込んだ減速機構である。

ギャボックスの製造工程は、まず、加工ユニットに導入された基板に歯車形状をエッチング加工して、型を形成する。次に、型の表面で金属層を形成した後に、この型を組立ユニットに運び、組立ユニットでピン立てを実施した後、再度、加工ユニットに戻して基板に歯車本体を電鏡加工する。そして、耕穂層をエッチングした後、組立ユニットに運び、組み付けを行う。すなわち、マイクロマン製作への適応を考慮して、加工と組立が相互に乗り入れるプロセスをあえて採用している。以下に、各ユニットについて述べる。

＜2.2加工ユニット＞ 加工ユニットは電解加工をベースにした歯車を加工するユニットである。図2に示したのが加工ユニットの写真である。この加工法の原理は加工溶液で加工電極と加工対象を近接させ、適度な電圧をかけて、電流の方向によってエッチング反応が起きるため、みかぎが起きるというものです。

電解加工法は、以下に述べる特性から装置の小型化に適応できる方式であるとともに、高分解能加工を実現できる可能性を持つ加工法である。この加工法の特徴は、以下の通りである。

・真空装置が不要なので、装置サイズが小さい。
・STM (Scanning Tunneling Microscopy)の機能を利用すれば、トンネル電流でモニタして、プローブ先端と基板との距離を数10nmに制御することができるのに対して、サブミクロンレベルでの分解能の加工も実現できる。
・電流の向きを変えることにより、一の装置で付加加工、除加加工の両方ができる。
・プローブ加工なので、任意の場所に加工がしやすい。

本ユニットの加工分解能は±2μm（STM使用時は±2μm）である。

図1 マイクロ加工・組立用作製システムの全景写真
Fig.1 The photograph of the experimental system

図2 加工ユニットの写真
Fig.2 The photograph of the processing unit
図3 送液ポンプの写真
Fig.3 The photograph of micro-pumps

図4 検査ユニットの写真
Fig.4. The photograph of the inspection unit

なお、電解加工では、対象の金属に応じた加工液、および洗浄液が必要になる。それら多数の溶液を送液するための小型のトロコイドポンプを搭載している。図3は、その送液ポンプの写真であり、このポンプの送液能力は10 ml/minである8。また、加工後の状態を検査するためには検査ユニットも搭載している。検査ユニットは、イメージガイドと接触センサを搭載した環境認識デバイスとこれを視察位置まで送り出すサーボアクチュエータを搭載したホールネジ機構からなる(図4)8。

図5は、スルファミン酸溶液中でクロム基板にて電解エッチング加工を行ったものであり、外形600μm、深さ100μmのパターン形成例である。

＜2. 3搬送ユニット＞ 従来の生産システムでは、ベルトコンベア方式の搬送が一般的である。しかし、この方式は各工程の速度の整合をとるため、多段階の工程を含むシステムでは多くのコンピュータ化を必要とするため、装置の小型化には不利な方法である。また、マイクロシステムのような極めて小型の部品を扱う場合には、加工と組立が相互に乗り入れられることも必要である。

そこで、この搬送ユニットは2次元に搬送できる方式を追求したが、その構成は1月角のブレーキメーカーを160個並べたホイールダイヤモンドを2枚重ねたものである。なお、部品等は、永久磁石を埋め込んだ搬送パレットに乗せて運ばれる。すなわち、任意の搬送コースに着いてブレーキホイールを回り、それらが発生する磁界に搬送パレットがひっかかれて搬送コースに沿って運ばれるという方式である。また、製作した搬送デバイスの主な特長は、搬送速度30mm/sec、最大搬送重量1g、搬送終点での位置決め精度±20μmである。

＜2. 4組立ユニット＞ 組立ユニットは、マイクロアーム、各種作業ツール、回転ステージ、組立用検査ユニットなどで構成されている。図6は組立ユニットの写真である。このユニットは、従来の自動組立の主流であるロボットによる組み立て方式を採用し、その構成部品を小さくすることで全体サイズを小型化することを基本としたが、その他にも、マイクロシステムの組立を考慮した要素が追加されている。

例えば、組み立てロボットに相当するものはマイクロアームであるが、各関節に小型、高トルクで低速回転可能な多段階超音波モータを搭載し、さらにそれぞれの超音波モータに精度なエンコーダを取り付けることにより、小型で高精度、しかも多自由度なマイクロアームを実現している。このようなマイクロアームの操作および位置決め精度は、±10μmである。(ただし、実際に作業をする場合の組立精度は、作業ツールとの着脱誤差のため±20μmである。) 組立ユニットは、このマイクロアームが2台設置されてお
図6 組立ユニットの写真
Fig.6. The photograph of the assembling

図7 真空チャックの写真
Fig.7. The photograph of the vacuum chuck

図8 塗布デバイスの写真
Fig. The photograph of coating device

図9 組立ユニットで減速用歯車を組み付けた状態の写真
Fig.9 The photograph of a plate and reduction gears after assembling
従来のデバイスとポールネジを用いた送り機構で構成されている。環境認識デバイスには、形状記憶合金のアクチュエータが組み込まれており、先端部を上下左右に±45°の角度まで曲げることができる。また、移動ゲイドが2本組み込まれているので、観察対象を立体視できる。

これらのデバイスを、システム上で協調的に動かすことにより、車両列の下枠に減速用車両を組み付ける状態の写真が図9である。さらに下枠板の側面に重量を軽くするための導体を塗布する作業、上蓋の取り付け、120μmのピッチで径1.7mmの車両を組み付ける作業などを実施して目的の車両列を組み立てることができた。

＜2.5システムの消費エネルギー＞システムとしての省エネルギー効果の可能性を検証するために、各ユニットの主要なデバイスについて対称時および線間時の消費電力を電流クラシング方式で測定した。その結果を表2に示す。この場合、実際の加工に関与するエネルギーは、ボテンショスタットによって供給されるが、対称時と線間時はともに5.4Wで変化がなかった。すなわち、加工行為によって消費されるエネルギーは、1/10W以下である。一方、X-Yステージの線間には約10W、液晶ディスプレイでは約20Wのエネルギーが必要である。また、組立ユニットでは、マイクロアームの2軸を操作させたとき約15W、塗布デバイスでは、線間には約100Wの電力が必要である。従って、塗布ユニットでは、塗布時に約300W消費される。

一方、付属品としての空調機器や売場の真空ポンプを線間させた場合、それぞれ、628Wと380Wの消費エネルギーである。すなわち、実際にシステムが線間して作業をする場合に、マイクロデバイスが消費するエネルギーはごくわずかで、周辺機器を線間させるためのエネルギーの方が数倍から数10倍大きい値となっている。これは、加工の原理や、対象のサイズ、および対象の重量から予想されたことであるが、システムに用いる個別のデバイスの消費エネルギーを小さくしても汎用部品として用いるコンピュータや制御装置、真空ポンプなどの付属品の消費エネルギーを削減しなければ、効果が得られないということである。

ただし、本システムを±1℃の温度で空調にするために必要なエネルギーは、628Wとなっている。従来から通常に用いられてきたシステムが設置された部屋全体を空調する場合、少なくとも数kWの電力が必要なことから考えれば、1/10～1/100程度である。また、生産現場がクリーン環境を必要とする場合も同様に、生産システムの必要な部分のみをクリーン化することで、大幅な消費エネルギー削減が期待できる。したがって、生産システムを小型化すれば、システムのみを空調することで、大きな省エネルギー効果が期待される。

3.まとめ

経済産業省の産業科学研究開発制度に基づくプロジェクト「マイクロファクトリ技術開発」において、加工、組立、搬送の工場における基本要素をデスクトップサイズ（600mm(W)×650mm(D)×750mm(H))に組み込んだ「マイクロ加工・組立用試作システム」を独自に設計製作し、個別のデバイスがシステム上で、機能を果たすことを確認し、デスクトップサイズのシステムでもミクロレベルの精度が必要な加工組立が可能であることを示した。また、システムとしての消費エネルギー効果は、生産システムの小型化による空調に要するエネルギーの削減効果が最も大きいことを示した。

<table>
<thead>
<tr>
<th>Table 2. Power consumption of each unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>in static condition (W)</td>
</tr>
<tr>
<td>Processing unit</td>
</tr>
<tr>
<td>Stage controller</td>
</tr>
<tr>
<td>LC display</td>
</tr>
<tr>
<td>Potentiostat</td>
</tr>
<tr>
<td>Assembling unit</td>
</tr>
<tr>
<td>Micro arm</td>
</tr>
<tr>
<td>Adhesive device</td>
</tr>
<tr>
<td>Conveyance unit</td>
</tr>
<tr>
<td>Device</td>
</tr>
<tr>
<td>Controller</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Air conditioner</td>
</tr>
<tr>
<td>Vacuum pump</td>
</tr>
</tbody>
</table>

330 T. IEE Japan, Vol. 122-E, No. 6, 2002
謝辞

本研究の一部は、経済産業省の産業科学技術研究開発制度に基づく「マイクロマシン技術の研究開発」の一環として、NEDOから委託を受けた（財）マイクロマシンセンターの再委託業務としてセイコーインスツルメンツ（株）等が実施したものである。
（平成13年7月5日受付、平成13年11月30日再受付）

文献


