シリコン/ガラス構造における Deep-RIE プロセスの開発

非会員 吉田 幸久、非会員 熊谷 宗人、
非会員 市川 淳一、非会員 鮫 継偉、
正員 堤 和彦（三菱電機（株））

Development of Deep Reactive Ion Etching (Deep-RIE) Process for Bonded Silicon-Glass Structures
Yukihisa Yoshida, Non-member, Munehito Kumagai, Non-member, Jun-ichi Ichikawa, Non-member, Jiwe Jiao, Non-member, and Kazuhiko Tsutsui, Member (Mitsubishi Electric Corporation)

For devices with bonded silicon and glass structures fabricated by deep-RIE, it is important to avoid damage at the silicon backside and sidewall during through-wafer etching in order to ensure reliability of devices. The silicon backside damage is caused by charge accumulation at the glass surface. This paper reports the novel method to avoid the processing damage occurred in silicon structures of accelerometers by means of an electrically conducting layer patterned onto the glass and connected with the silicon. The positions of silicon damage in the structural layout were identified without destruction of samples by using transparent indium tin oxide (ITO) films as the electrically conducting layer. From the experiments, it was found that there exists silicon damage caused by charge accumulation at the silicon islands isolated by deep-RIE and we present important rules for mask layout when utilizing this method. Finally, the improved results of shock tests are briefly shown.

キーワード：シリコン/ガラス構造、高アスペクト比反応性イオンエッチング、マイクロローディング効果
Keywords: bonded silicon-glass structures, deep reactive ion etching, microloading effect

1. はじめに

ICP を用いたシリコンの高アスペクト比反応性イオンエッチング (Deep-RIE) 1, 2, 3）は、近年マイクロマシンニングを用いたセンサ分野の開発で広く用いられている。その中で、ガラス基板に接合したパルクシリコンを貫通エッチングして作る架橋構造体は、慣性センサなどに適用され、汎用性の高いセンサ形態である (2, 3)。本稿では、この形態を利用した加速度センサを対象として、シリコンの架橋構造体に生じるプロセスダメージとその発生機構、及び回避策について研究した結果を述べる。また本対象を対象として作製した加速度センサの特性及び耐衝撃性について述べる。

ドライエッチングではよく知られているように、マスク開口幅に依存してエッチング速度が異なるマイクロローディング効果が生じる。シリコン/ガラス構造では、この効果によりマスク開口幅の広い箇所でより早くシリコンが貫通し、そこからエッチングガスがシリコン内部とガラス基板の間際に流れ込む。本稿で述べるプロセスダメージは、この現象に起因したシリコン内部で構造体側壁の侵食である。センサの温度係数及び共振周波数が設定通りの値を示し、かつデバイスとして信頼性や耐衝撃性を確保するために、プロセスで生じるこうしたダメージを抑制、回避すること

2. 作製プロセス

本研究で作製した加速度センサは、二枚のガラス基板とそれらに挟まれたシリコン基板からなる。図1に、シリコンの構造図を示す。シリコン構造体は、積層電極を有する可動電極、固定電極、外部から強制駆動する自己診断電極、可動電極を支える二の支持パネル、そしてセンサ内部を気密封止するための外枠封止部からなる。また、上下のガラス基板には可動電極を空中に浮かすためにギャップが形成される。図2に、図1のA-A'断面でみたプロセスフローを示す。まず400μm 厚シリコン基板の積層電極や支持パネルが形成される箇所を Deep-RIE により 280μm エッチバックする（図2a）。Deep-RIE は、Plasma Therm 社 ICP-RIE によるサイクルエチッキングを採用した。ガスは SF6, Ar, C2F6 を用い、ICP パワーは 850W、エッチング時の基板側の RF パワーは 10W とした。可動電極には、図示するように一部エッチバックされない部分を設ける。これは耐衝撃用ストッパであり、センサに適度の衝撃が加わった際、積層や支持パネルの破損を招く可動電極の過剰変位を規制するためのものである。次に図2a のシリコンを、
3．実験結果と考察

3.1 シリコン裏面のダメージとガラス表面に形成する導電膜の効果

まず最初に、ガラス基板に接合したシリコンを貫通エッチングする際に生じるシリコン裏面のダメージについて述べる。シリコン構造体を Deep-BIE によってリリースした後、下部ガラスに対向するシリコン裏面を SEM により観察した。図3は、下部ガラスに導電膜を形成しない場合である。SEM 写真の耐衝撃用ストッパーに注目すると、その底面は著しく侵害されていることがわかる。このような侵害は、先に貫通するマスク開口幅の広い箇所から、シリコン裏面と下部ガラスの間際にエッチングガスが侵入することが原因となる。SEM 写真の耐衝撃用ストッパーに注目ると
(3.2) ガラス表面に形成する導電膜のレイアウト則

上述したように、下部ガラスにシリコンと接続する導電膜形成することは、シリコン表面のダメージ回避に対し極めて有効である。そこで、下部ガラスに接合されたシリコンは Deep-RIE によって板状に分離され、通常それらは互いに独立した電極を担う。従って、電極間のショートが起こらないよう導電膜をシリコン板に接続しなければならない。ここでは、導電膜を図1に示す3つのシリコン板（自己診断電極、可動電極、外枠封止部）に接続した試料を作製し、それらの裏面形状を比較した。本結果から導電膜とシリコンの接続に関するレイアウト則を示し、プロセスダメージ回避の最適な方法について述べる。なお本実験では、構造体の裏面観察を行わず行うため、下部ガラスに形成する導電膜は可視光を透過する ITO (Indium Tin Oxide) を用いた。（6）

(3.2.1) ITO 膜を自己診断電極に接続した場合

まず最初に、ITO 膜をシリコンの自己診断電極に接続した場合について述べる。図5に、得られた試料のシリコン裏面を下部ガラスと ITO 膜を通して光学顕微鏡で観察した結果を示す。構造シリコンは 4μm と 20μm の間隔を交互に並んでいる。ここで構造シリコンの幅を制限すると、可動電極に接する矢印で示した箇所が他の箇所より粗くなっていることがわかる。全ての箇所が同じ幅で設計されているので、この結果は矢印で示した箇所が何らかのダメージを受けたことを示している。図6は、図5の観察結果をもとに、ダメージを受けた箇所の相対位置関係を示す模式図である。ここでダメージの度合いをより詳細に調べるために、試料を破壊して可動電極の一部を取り出し、その裏面を図3と同様に SEM 観察した。図7(a)、(b)は、箇所の側
壁をそれぞれ4μm間隔側、及び20μm間隔側から観察した結果である。図7(a)において構造の側壁と付け根部に、特に、構造a1、a2は構造a3に比べ顕著なダメージを受けていることがわかる。一方、図7(b)の側壁側壁は図7(a)ほどどのダメージは受けていないが、その度合いは構造a2、a3より構造a1の方が大きいことがわかる。

図6に示す可動電極の構造a1、a2、a3の表面側のSEM写真（4μm間隔側から観察した様子）で、a1、a2の側壁が選択的に破壊されている。b)20μm間隔側からの観察、a)構造のダメージは受けていない。

Fig. 7 SEM pictures of comb fingers a1, a2, and a3 of the moving electrode as shown in Fig.6.

以上のようシリコン側壁のダメージは、3.1で述べたガラスチャージングによるシリコン側面のダメージとは明らかに異なる。その発生機構を推定した側壁の断面模様図を図8に示す。側壁の表記は、図6に対応している。

図8(a)は、いずれの開口部でもシリコンが貫通していな
い状態を示す。図8(b)では、20μm幅の開口部が貫通し、
エッチングガスが下部ガラス上のITO膜に衝突する。これでエッチングガスの電荷は、ITO膜からシリコンに移動する。

図8(c)では、4μm幅の開口部が貫通するが、ウェハ
面内のエッチングレート分布による未貫通部の発生を回避するためオーバーエッチングを行う。ここでのITO膜から移動する電荷はITO膜と接続する自己診断電極にのみ蓄

積し、図示するように側壁間で電圧の分布が生じる。その
結果、側壁間でエッチングガスの軌道は歪められ、自己診
断電極の構造c1、c2に対向する可動電極の構造a1、a2が選択的にダメージを受けることとなる。これは図7(a)の観察結果とよく一致する。また、電位分布によるエッチ

ングガス軌道の現象は、側壁間がより狭いほど顕著になり、
ダメージも大きくなるはずです。これ谷図7(a)に示す
側壁側壁のダメージが、図7(b)のそれより大きいことと
一致する。

図8 ITO膜を自己診断電極に圧接した試料のダメージ発
生機構を説明する断面模様図。図5、6、7の観察結果に基
づく。図中の破線矢印はエッチングガスまたは正電荷の流れを示す。
(a)図の開口部でシリコンが貫通していない状態,
(b)20μmの開口部が貫通した状態,
(c)4μmの開口部が貫通し、オーバーエッチングを行っている状態。

Fig. 8 Probable mechanism of Si damage showing the cross section of combs.

(3.2.2) ITO膜を可動電極に接続した場合
下部ガラスに形成するITO膜を、シリコンの可動電極に
圧接した試料について述べる。本試料のSEM写真を図9に
示す。図9(a)は、図7の可動電極構造と同じ箇所を観察

394

T. IEE Japan, Vol. 112-E, No. 8, 2002
した結果である。図9(b)は、固定電極の働く側壁を観察した結果である。可動電極の働く側壁は非常に平滑な面を呈している一方、固定電極の働く側壁にはエッチング粒子が衝突した痕跡が認められる。この結果は3.2.1で述べた考察とよく一致する。即ち、ITO膜は可動電極に接続しているので、エッチング中に可動電極がチャージアップし、これと対向した固定電極側壁にダメージが生じたと考えられる。しかし、ダメージの度合いは3.2.1の場合よりも小さく、層付け部に切り欠き状のダメージなどは起こっていない。ここで試料の各電極のシリコン側壁に着目すると、自己診断電極は0.55mm、可動電極は1.3mm、固定電極は0.55mmである。ITO膜と接続するシリコンの体積が大きいほどチャージアップは低減できるので、本実験の試料のダメージは小さくなったと考えられる。以上の結果から、ITO膜と接続するシリコン島は、次節で述べる外枠封止部（図1参照）が理想的であると思われる。何故なら、自己診断プロセスが完了しデイジングによる素子分離がなされるまで、外枠封止部はウエハ内部に連続しており、最も大きい体積を占めているからである。

（3.2.3）ITO膜を外枠封止部に接続した場合

下部ガラスに形成するITO膜を、シリコンの外枠封止部に圧接した試料について述べる。図10に示すSEM写真から、図9の場合と同様に、図7で見られた顕著なダメージは存在しないことがわかる。ただし、固定電極側壁の側壁が平滑である一方、可動電極側壁の側壁に若干のダメージが見られる。ITO膜がどの電極にも接続していないことから、本結果はITO膜を介して生じるシリコンのチャージアップでは説明できない。図10は、ガラス基板上で分離されたシリコン島はITO膜を介さずとも自発的にチャージアップし、それによって生じた結果と考えられる。3.2.2で述べたように、自己診断電極と固定電極のシリコン体験は、可動電極のそれより小さいため、プラズマ中でよりチャージアップしやすい。従って、体積の大きい可動電極側に若干のダメージが残ったと考えられる。以上の考察から、シリコンのダメージを回避するには、導電膜と接続するシリコン島を外枠封止部に選択し、更にセンサ特性に影響を及ぼさないアンカー部の体積を調整するなどして、各電極のシリコン体験を統一することが効果的であると言える。

図9 ITO膜を可動電極に圧接した試料のSEM写真
(a)可動電極側壁の裏面（図7と同じ箇所）、非常に平滑である。(b)固定電極側壁の側壁、若干のダメージが残る。
Fig. 9 SEM pictures of the sample in which the ITO film is in contact with the moving electrode, (a) comb fingers of the moving electrode and (b) comb fingers of the fixed electrode

図10 ITO膜を外枠封止部に圧接した試料のSEM写真
(a)可動電極側壁の裏面側（図7と同じ箇所）、若干のダメージが残る。(b)固定電極側壁の側壁、平滑である。
Fig. 10 SEM pictures of the sample in which the ITO film is in contact with the sealing area, (a) comb fingers of the moving electrode and (b) comb fingers of the fixed electrode
4. 加速度センサの特性と耐衝撃性

前章までに述べたプロセスダメージ対策を施して作製した加速度センサの特性について述べる。3.1で述べた耐衝撃用ストッパーは可動電極に付随するため、これが図3のような変形を受けると感度や線形応答性、他軸感度などに影響を及ぼすことになる。室温での感度は増幅倍率を含まずCV変換を通して85MV/gとなりほぼ設計感度が得られた（図11参照）。感度の線形応答性も0.3%以下であった。センサ感度の温度特性の一部を図12に示す。温度感度は、回路による温度補償無しで-30～100℃に渡って3%以下、オフセット電圧の変動も5%以下の良好な結果が得られた。

加速度センサの応用分野として自動車への搭載を考える場合、環境温度や湿度に対する長期信頼性に加え、耐衝撃性が重要な仕様となる。耐衝撃性は落下試験機などを用いて、どの程度の高さでセンサ内部の可動構造体が破損しないかを試験する。振動シリングに図7に示すようなダメージが残る場合、落下試験を行うとこれらの構造体が容易に破損する。図13に、センサ単体を100cmの高さからコンクリート上から自由落下したときの外部観察結果を示す。本端で述べたプロセスダメージの対策を施し、加速度を検出する可動面に対してストッパー構造を完備することで、200cmからの自由落下でもS1構造体が破損しないセンサを開発することができた。

図11 作製した加速度センサの感度特性
Fig. 11 Sensitivity of accelerometers

図12 加速度センサの感度の温度特性
Fig. 12 Temperature dependence of sensitivity

図13 センサの自由落下試験結果の一部（裏面の光頭観察）
(a) プロセスダメージの対策を施した素子では振動折れやチッピングは起こらず、200cmの耐衝撃性が得られた。
(b) プロセスダメージの残る素子を100cmから自由落下した結果、侵食された線形関数で破損している。
Fig. 13 Shock survivability of accelerometers, (a) the sample without any damage withstood the free fall test at 200 cm height, (b) the sample with some damage as shown in Fig. 7 was broken under 100 cm height.
5. まとめ

Deep-RIE はイッチ法と異なりシリコン加工における結晶方位依存性がないため、デバイスの設計自由度に対し格段に優位である。しかし、Deep-RIE 特有の加工特性を十分に把握して、デバイスプロセス設計をすることが重要である。本稿では、ガラス基板に接合したパルクシリコンを Deep-RIE によって貫通エッチングする際、マイクロコーディング効果に起因して生じるシリコン構造体のダメージとその解決方法について述べた。ダメージの発生原因とその解決方法について以下にまとめる。

(1) マスク開口幅の異なるパターンが混在する場合、開口幅の広い間隔が先に貫通し、そこからエッチングガスがシリコン表面とガラス基板の間際に選択的に作用する。これによってガラス基板はチャージアップし、導電で反電されたエッチングガスがシリコン表面を侵食する。ガラス基板上にシリコンと接続する導電膜を形成することで、このダメージは回避できる。

(2) ガラス基板上での分離され、かつ導電膜と接続するシリコン島は、導電膜を介してチャージアップする。チャージアップしたシリコン構造体の近傍ではエッチングガスの直進性が鏡面される、隣接する他の構造体にダメージを与える。このダメージに対しては、導電膜と接続するシリコン島を外枠封止に選択し、セラミック特性に影響を及ぼさないアンカー部の体積を調整するなどして、各電極のシリコン体積を統一することが効果的である。

(平成13年12月26日受付、平成14年3月8日再受付)

文献


