走査型熱顕微鏡における能動式温度計測カンチレバーの高性能化

正員 中別府 裕* 非会員 神田 孝浩**

Improvement of an Active Temperature Measurement Cantilever of a Scanning Thermal Microscope
Osamu Nakabeppu*, Member, Takahiro Kanda**, Non-member

Scanning Thermal Microscope with a thermal feedback system is capable of taking topological and quantitative temperature images simultaneously with sub-micron spatial resolution with the micro-fabricated special cantilever having thermopile, heater and thermocouple on it. Since high sensitivity of the thermopile in heat flow detection is required for accurate temperature measurement, we tried to make the cantilever more sensitive by reducing its thickness. As a result, thermal resistance of the cantilever increased one order of magnitude, and then sensitivity in temperature measurement and applicability to low thermal conductive material were improved. Moreover, temperature distribution of a wave guide optical switch including low thermal conductive polymer and metal heater was visualized quantitatively with the improved cantilever.

キーワード：走査型熱顕微鏡, AFM, カンチレバー, 温度計測, 熱伝導加工

Keywords: Scanning Thermal Microscope, AFM, Cantilever, Temperature Measurement, Micro fabrication

1. はじめに

走査型熱顕微鏡 (SThM, Scanning Thermal Microscope) とは, AFM や STM に温度計測機能を付加しサブミクロン空間分解能で温度や熱伝導率を計測する顕微鏡である (1)-(3). マイクロ・ナノテクノロジーの進展に伴い, ナノスケールの電子デバイスやナノ構造を持つ材料の温度や物性分布計測のニーズが増している (4)-(6). に対し, 従来の熱放射計測 (7)-(9) あるいは集光レーザー (10) を利用する遠赤外光学的な微小スケール温度計測法は適用限界を迎えている. 一方, 立体プローブ先端と試料の微小接触部を通じて熱情報を計測する近接型の SThM は数 10nm の空間分解能を持つ唯一の局所温度計測法として期待されている.

これまで, AFM ベースの SThM においては, カンチレバープローブを試料へ接触させ, 測温抵抗体 (RTD) や熱電対などのカンチレバー上温度センサーの出力を計測する受動的方法において, センサーの微小化により, 画像計測の空間分解能は 10nm 程度まで向上することが報告されている (10)-(12). しかし, 受動的方法では計測温度ではなく, 試料・カンチレバー間の熱流であり, 温度, 熱伝導率画像は定性的なものとすることが課題であった. これは, 熱源が温度差と接触熱カーテクタスと比の熱伝導性スケールが不明らしく, 接触点に依存し, 固定が難しいことに起因する問題である.

そこで筆者らは, SThM において正確な温度計測を可能とする能動式温度計測法を開発し, 半導体微細加工技術を用いた温度計測カンチレバー, 熱フィードバック回路を製作し, 時間分解能 30nm, 時間分解能 20ms, 温度精度±1℃の性能で, SThM による定量的な温度計測が可能なことを示してきた (13)-(16). しかし, 鎖能法においても, 計測感度が不十分な場合, 低熱伝導率試料に対する精度計測が難しい, 研究室での数値シミュレーションでは流が大きく, 最高性能の再現が難しいという問題が残されていた.

本研究では, SThM における能動式温度計測の高性能化と計測対象の拡大を目指し, カンチレバーの構造式による温度計測精度の向上を試みた. また, 高感度化したカンチレバープローブにより, 従来は困難であった低熱伝導率材料の検出と金属製構成物の導波式光スイッチの温度分布計測を試みることとした.

以下, 本論文では SThM における能動式温度計測法の概要を述べ, カンチレバーの感度化に関する実験結果と考察を示し, 導波式光スイッチの温度分布計測を通じて提案する SThM の利点, 問題点を考察する.
2. SThMの能動式温度計測法

(2-1) 計測原理 カンチレバーの先端が試料に接触すると、試料・カンチレバー間の温度差と接触熱コンダクタンスに応じ両者間に熱流が生じる。先端部に計測接点を根元部に基準接点を持つ熱電対を搭載したカンチレバー（図1）では、ボデイの熱コンダクタンスは一定であり、熱電対は熱流に比例した信号を出力する。この受動的計測法では、計測温度は温度差のみならず接触状態に依存し、接触状態を正確に把握しない限り定量的な温度計測が出来ない。能動計測法では、カンチレバー上に熱流を検出するサーモバイアル、温度を計測する熱電対、温度計測のヒーターを搭載し、サーモバイアル信号に比例した熱流をカンチレバーに与える熱フィードバックを実施し、カンチレバーと試料の温度を一致させた状態でカンチレバー温度を計測する（図2右）。熱流検出感度が十分であれば接触状態変化の影響を受けない定量的な温度計測が可能と考えられる。

(2-2) 温度計測カンチレバー SThM上で実現するには、微細なカンチレバーに上述の3つの機能を搭載する必要がある。図2に、これまで開発した温度計測カンチレバーの構成を示す。カンチレバーは、Si基板上の厚さ2μmのSiO2膜の上に、クロム、ニッケルの薄膜でサーモバイアル、熱電対、ヒーターをリフトオフ法により形成し、TMAHによりSi基板をエッチングすることで製作されている。カンチレバー長さは約260μmであり、パターン化に蒸着されたSiO2の保護膜、前面に蒸着するAu反射膜を含め、約3μmの厚さを持っている。製作方法の詳細は参考文献(16)に示されている。

また、原理の説明（図1）では針状突起を持つカンチレバーを想定していたが、本研究では、製作上の简易さから、针状突起を持たない平板型のカンチレバーを製作、使用した。このため、後述のように、温度計測精度は低いが、空間計測精度は接触状態変化の影響で低下し、画像計測にアーティファクト（偽の分布）が現れるが残っている。

(2-3) 温度計測システム 能動式温度計測法に図3に示す自作のアナログ回路による熱フィードバック系を用いる。回路では、サーモバイアル信号V_{2p}が計装用オペアンプでG_{q}倍に增幅され、2次ローパスフィルタでノイズをカットし、入力の平方根を取るG_{w}倍する平方根回路、ゲインG_{q}のパワーアンプを通じヒーターへ電力を供給される。画像計測時は、熱フィードバックをかけながら、カンチレバーとベース部の温度差を示す熱電対信号T_{m}-T_{b}を計測する。
号と同時に AFM で記録し、ベース部温度 Ts を別途通常の熱電対で計測する。

この系は、試料・カンチレバー間の熱流 Q[W]を入力とし、Gq と Q_sc を出力する熱的線形フィードバック系である。一方、動作確認に使うサーモバイアル信号 V_Tp [V]とヒーター電圧 V_Ht [V]には、実験の非線形的な関係があり、電圧変換率 Gv が V_Tp を含む便宜的に定義される。系の安定動作を示す Gv の最大値は 10^6 程度(2) であった。

上式(1)は、電圧ブロック試料にカンチレバーを接触させ走査しない状態で、電圧増幅率 Gv を変化させ温度測定（ポイント計測）を行った例である。Gv の増加と共に、サーモバイアル出力は低下し、熱電対出力は一定値傾近し、この操作により、カンチレバーが試料と同一温度へ達したことが分かる。現状では、サブミクロンスケールでの温度計測手段が他に無いため、増幅率の増加に対する計測温度の傾向を確認する操作が接触点の局所温度を定量化的に同定する唯一の方法であると言える。

3. カンチレバーの高感度化

(3.1) 高感度化指針

図 5 に示す能動式温度計測における熱バランスを集中定数モデルにより解析すると、計測温度は次式で与えられる。

\[\frac{T_m - T_h}{T_s - T_b} = \frac{1 + G_0}{1 + \eta + G_0} \]

\[\eta = \frac{R_{sc} + R_{pp}}{R_b} \]

\[G_0 = \frac{\frac{Q_{sc}}{Q_{sc}}}{\frac{R_{sc}}{R_{pp}} + \frac{G_0}{G_0}} \]

ここで、R_sc は試料・カンチレバー間の熱抵抗、R_pp はサーモバイアルの熱抵抗、R_b はサーモバイアルのベース間のカンチレバーを熱抵抗、G_sc はサーモバイアルの熱帯電率、R_sc はヒーターの電気抵抗である。

(3.2) 薄膜化による高感度化

カンチレバーの熱抵抗を増やす方法、基板となる SiO2 層と Ni、Cr の薄膜をハーバー、さらに背面のレーザー反射用 Au 膜の厚さを減らし、表 1 に示す 3 种類のカンチレバーを製作した。従来の製作工程の前に Si 基板上の酸化膜を RIE によりエッティングし薄くする工程に入れ、以降は同じ工程で製作した。Type-A は従来型、Type-B、Type-C は合計厚さが従来型の 79%、62% 薄膜化した、カンチレバーの熱抵抗は約 2.6 倍、4.8 倍へ増加することが見込まれた。

(3.3) 熱抵抗、熱容量評価

カンチレバーの真空環境下に置き、ヒーターへ直流、および交流を供給し温度変化をカンチレバー上の熱電対で計測し、熱抵抗と熱容量を評価した。設計値によく一致し設計値を表 1 の右側に示す。設計値から、薄膜化により最大で熱抵抗は約 1.5 倍、熱容量は約 60% と測定されたが、実際に得られた値は、最大で熱抵抗約 1.7 倍、熱容量は 50% と示された。予測と実験の差は、±10% 程度の各層の厚さのバラつき、特に、基板 Si のエッティング精度が約 ±0.5% 近いヒーター・ベース間距離
のばらつきが原因に挙げられる。設計値に対する厚さや距離の誤差の割合は熱抵抗の変化率と等しく、製作精度の問題が大きいと考えられる。全体として、実験結果は薄型化により熱抵抗を1桁程度増加できることを示している。

(3-4) 高感度化の総合評価 総合的な能動式温度計測の感度は、熱抵抗比ηが小さく、いかに小さなηで正しい感度を計測できるかで評価される。ηやGₚの直接計測は難しいため、ヒータ発熱量Qₚとサーモバイル信号Vₚの比として次式で定義されるゲインGₚに対して、測定温度を比較し評価を行った。

\[Gₚ = \frac{Qₚ}{Vₚ} = \frac{Vₚ}{RₚαₚΔTₚ} = \frac{Gₚ}{αₚRₚ} \quad \text{(W/V)} \quad \text{…………(5)} \]

カンチレバーを既知温度の鋼ブロック試料に接触させ、回路の増幅率を調整しGₚと計測温度をプロットすると図6となる。データに式(2)をフィッティングし、熱抵抗比ηと無次元計測温度が90%となるように必要なゲインGₚを求めた（表2）。

![図6 温度計測感度の比較](image)

図6 温度計測感度の比較

Fig. 6. Comparison of sensitivity in temp. meas.

表2 温度計測感度評価

Table 2. Evaluation of Sensitivities.

<table>
<thead>
<tr>
<th></th>
<th>η [ratio]</th>
<th>Gₚ₉ₐ</th>
<th>Gₚ₉₀</th>
<th>Ratio of Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-A</td>
<td>28 [1]</td>
<td>105</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>Type-B</td>
<td>3.6 [1/8]</td>
<td>9.0</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Type-C</td>
<td>1.7 [1/16]</td>
<td>2.1</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

薄型化により、Type-Aの値に対してType-B、Type-Cは熱抵抗比で約1/8、1/16倍、必要ゲインGₚ₉₀も同程度の割合で減少しており、Gₚ₉₀の逆数を感度とすると、それぞれ約8倍、17倍の感度向上という結果が得られた。

カンチレバー熱抵抗が従来型の10³ KWの桁から薄型化により10⁵ KWの桁へ増加させたことは、動的な接触熱抵抗を示す低週波伝導試料への適用性の拡大をもたらす。表3に、金属（熱伝導率100 W/mK）とポリマー（熱伝導率1 W/mK）試料に対し、温度1％の温度計測に必要なゲインGₚ₉₀を予測し、可能な最大ゲインGₚ₉₀を比較した結果を示す。ここでGₚ₉₀はGₚ₉₀の約10倍である。金属試料では接触熱抵抗が10³ KW程度と小さかったため、従来型、薄型とも計測に必要なゲインGₚ₉₀が小さく、定量的な温度計測が可能である。一方、ポリマー試料では接触熱抵抗が10⁷ KW程度になり、従来型では熱抵抗比ηが大きくなり、計測に必要なゲインGₚ₉₀は最大値をGₚ₉₀を超える。温度計測は不完全と予測される。従来型カンチレバーでは、熱抵抗比が抑えられ、既存ゲインも増加するため、ポリマー試料に対しても必要ゲインは最大ゲイン程度であり、温度計測可能と判断される。

4. 導波式光スイッチの温度計測

熱光学効果を利用した導波式光スイッチは、導波路を含むポリマー層上にヒーターを配置した構造を持ち、ヒータ加熱による温度変化で導波路の屈折率を変化させ、信号のスイッチを行う光デバイスである。デバイスの温度分布計測は作動特性を調べる上で重要であるが、10μm程度の微細な構造、ポリマーと金属という熱、光特性が大きく異なる材料で構成されており、赤外線温度計測法の従来の微小スケール温度計測法の適用が難しく、高感度化したSthMによる正確な温度分布計測を試みた。

図7は、光スイッチの模式図、同時計測された形状と温度画像、また、図8に温度画像中縦線で示す領域の平均温度・高温分布を示す。計測では、10μm幅のヒーターを中心に周囲50μm四方の領域を0.025Hzの周波数でスキャンした。

形状画像、形状と温度・高感度分布を計測の結果、約35℃のポリマー層上のヒーターは約50℃の温度上昇を示し、ヒーター近辺のポリマー層も10℃弱の温度上昇を示している。また、粒子状物質の部分は、赤外線発光極端に低下し温度画像中でもダークスポットとして表れている。高温領域も実際のヒーター幅より広く表れている。

表3 温度計測能力の向上

Table 3. Prediction of temperature measurement performance.

<table>
<thead>
<tr>
<th>Cantilever</th>
<th>Rₜₘ</th>
<th>Gₚ₉₀</th>
<th>Metal (λ=100 W/mK)</th>
<th>Polymer (λ=0.1W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>10⁴</td>
<td>10³</td>
<td>10⁴</td>
<td>2</td>
</tr>
<tr>
<td>Modified</td>
<td>10⁵</td>
<td>10⁴</td>
<td>10⁴</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact radius: 10nm
図7 場波路式光スイッチの模式図と SThM 計測結果
Fig. 7. Schematic and SThM images of a wave guide type optical switch.

図8 場波路式光スイッチ表面の温度分布および形状
Fig. 8. Temperature and height distribution on the wave guide type optical switch measured with the SThM.

図9 溫度画像の定量性の検証
Fig. 9. Verification of the temperature imaging.

図8で、ヒーターの幅が実際に広く計測される理由は、カンチレバー（Type-B）が針状突起を持たない平板型であり、ヒーターの左側エッジにカンチレバー先端部の複数箇所が順次接触するためと考えられる。同じ原因で、温度分布にも左側エッジ付近でヒーターの幅を超えて高温領域が計測されるアーティファクトが現れている。図中に加筆した破線が本来の温度分布に近いと推測される。カンチレバーの同一部に接触する試料平面部（ヒーター表面の中央部を除くヒーター端のポリマー部）では、真の温度を計測すると期待される。また、本来ヒーターに関して対称な温度分布が形成されるはずが、ヒーターより左側の温度が若干高い分布が計測されている。これは、カンチレバーが図中右側をベースに左側を先端として配置し、ヒーターの左側を計測している時に、ボディが直下のヒーターにより残存ガスによる熱伝導で加熱される影響が現れているためと考えられる。これらの考察から、ヒーターの右側に現れている計測結果が本来の温度分布に最も近いと考えられる。

また、高さ分布に現れたヒーターエッジ部のピークに関しても、急激な温度変動によるカンチレバーの熱変形が原因となったアーティファクトであり、実際のヒーター形状はほぼ矩形である。

段差部に現れる複数接触点の影響は、既存技術を導入しカンチレバーに針状突起を持たせることで解決可能である。また、形状中のアーティファクトは、カンチレバーの熱変形を低減する積層構造の導入、サーモバイアル、ヒーター、熱電対をカンチレバー先端部にさらに集中させ、温度変化する領域を狭めることで、低減されると考えられる。

次に、温度画像計測の定量性を調べるため、画像中のデータと、カンチレバーを特定の位置に固定し、熱フィードバックゲインを変えて試料温度を定めるポイント計測の
結果の比較を行った。比較結果は、画像中で最も高い温度を示すヒーター上の点（x = 0.0 μm）と5 μm 離れたポリマー上の点である（図7形状写真参照）。ヒーター発熱量に対し各点の計測温度を図9に示す。画像計測（スキャン）中に計測した温度とは、ポイント計測の結果とほぼ一致し、また、発熱量に比例した温度上昇を示し、合理的である。この結果は、能動試験温度計測ではフィードバックゲインを変えて計測温度の飽和を確認することで試料表面の局所温度を固定でき、また、画像計測においても温度計測の定量性が確認されたことを示している。

5. まとめ

SThMの能動試験温度計測に際し、カンチレバーの薄形状による温度計測精度の向上を試み、以下の結論を得た。

従来の試料、厚さ約60%の（2μm）の温度計測カンチレバーの試作に成功した。この薄形状によりカンチレバーの熱抵抗を1/9増加させ、10μK以下の1オーダーとすることで、小さな熱流束で定量的な温度計測が可能となった。さらに、正確な温度計測が可能な試料対象をポリマー等の低熱伝導体へ拡張することが可能となった。

また、計測試料への適用実験として導波路試験光スイッチチの温度分布計測を行い、カンチレバー形状からアーティファクトの問題はあるものの、定量的な温度計測が可能なことが示された。

取付カンチレバーは針状突起の無い平板状であり、凹凸のある試料に対してアーティファクトが発生し空間分解能の低下が見られた、さらに、カンチレバーの熱変形が形状計測に影響を及ぼす可能性が見られた。今後、熱変形をもとにして温度計測カンチレバーの開発が必要である。

謝辞

本研究の遂行にあたり、カンチレバーの製作には東工大精密工学研究所メカノマイクロプロセッサ室を用いたサブルーム作成電気加熱装置を用いて、関係者に深く感謝を表明します。また、本研究の一部は東工大挑戦的研究費により行われました。ここに謝意を表します。

（平成16年4月1日受付、平成16年7月6日再受付）

文 献

