IEEJ Transactions on Sensors and Micromachines
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
Paper
Real-time High-resolution Measurement of Pancreatic β Cell Electrophysiology Based on Transparent Thin-film Transistor Microelectrode Arrays
Dongchen ZhuAnne-Claire EilerSatoshi IhidaYasuyuki SakaiHiroshi ToshiyoshiAgnès Tixier-MitaKikuo Komori
Author information
JOURNAL RESTRICTED ACCESS

2022 Volume 142 Issue 10 Pages 266-272

Details
Abstract

A transparent high density thin-film-transistor microelectrode array (TFT-µEA) was investigated, for the first time, to apply to real-time electrophysiological monitoring on glucose-stimulated insulin secretion dynamics of pancreatic β cells at higher resolution than conventional microelectrode arrays (MEAs). TFT-µEAs employed in this work are designed based on the switch matrix architecture, which incorporates a large sensing area (15.6 mm × 15.6 mm) with a 150 × 150 array of indium-tin-oxide (ITO) microelectrodes placed at a 100 µm pixel pitch. TFT-µEAs coated with poly-L-lysine and laminin enabled to culture rat insulinoma β line iGL for at least 7 days without cell death, which was determined by conventional cell viability tests based on a fluorescent staining method. Real-time action potentials of iGL cells stimulated by 15 mM glucose were successfully observed in similar to those in a conventional MEAs. These results are the first step towards the development of a multimodal TFT-µEAs device for electrophysiological, biochemical and optical analyses of the pancreatic islets. TFT-µEAs would extremely be promising platforms in the bioanalysis field for neurochemistry and electrophysiology.

Content from these authors
© 2022 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top