The Mitochondrial tRNAAla T5655C Mutation May Modulate the Phenotypic Expression of tRNAMet and tRNAGln A4401G Mutation in a Han Chinese Family With Essential Hypertension

Yunhong Xu,1 MD, Ximing Chen,1 MD, Huanliang Huang,2 MD, and Wanting Liu,3 MD

SUMMARY

Mutations in mitochondrial DNA are associated with the pathogenesis of essential hypertension. We report here the clinical, genetic, and molecular characterization of a three-generation Han Chinese family with essential hypertension. Most strikingly, this family exhibited a high penetrance of essential hypertension. Sequence analysis of the mitochondrial genome showed the presence of a homoplasmic T5655C mutation in tRNAAla, together with the A4401G mutation in the adjacent region between tRNAMet and tRNAGln. Notably, the T5655C mutation was localized at the acceptor arm of tRNAAla, disrupted the high conserved base-pairing (1A-72T), and may impair the tRNA function. Moreover, the A4401G mutation was reported to decrease the steady-state level of tRNAMet and tRNAGln, and consequently caused the mitochondrial dysfunction responsible for hypertension. Taken together, the combination of T5655C and A4401G mutations in mitochondrial tRNA genes may account for the high penetrance and expressivity of hypertension in this Chinese family. Thus, our findings may provide new insight into the pathogenesis of this disorder. (Int Heart J 2017; 58: 95-99)

Key words: mt-tRNA, Variants, Pedigree, Blood pressure

Essential hypertension (EH) is one of the most important modifiable risk factors for cardiovascular disease and renal disease worldwide. EH is commonly regarded as a multifactorial disease influenced by both genetic and environmental factors. Familial aggregation of high blood pressure, despite different environmental factors, suggests that genetic factors are involved in the etiology of hypertension.1

EH can be caused by single gene mutations, resulting from interactions between the environment and inherited risk factors. It is now generally believed that human hypertension is a condition associated with endothelial dysfunction and oxidative stress.2 Mitochondrial dysfunction has been potentially implicated in both human and experimental hypertension.3 Human mitochondrial DNA (mtDNA) is a double-stranded circular molecule with 16,569 bp encoding 37 genes: 13 for essential subunits of the oxidative phosphorylation (OXPHOS) system, 2 for rRNAs, and 22 for tRNAs required for mitochondrial protein synthesis.4 All of these mt-tRNAs form a highly conserved cloverleaf structure, containing the acceptor, anticodon, and T stems, as well as TrpC, D, and anticodon loops. Due to the lack of histone protection and a poor DNA repair system, mtDNA has a higher mutation rate than nuclear DNA. Most recently, several mt-tRNA mutations have been reported to be associated with EH; these mutations include the A4435G in the tRNAMet gene,6 A12330G in the tRNACUN gene,7 A4295G in the tRNALeu gene,8,9 These mutations can result in translational defects and consequently mitochondrial respiratory chain dysfunction, and are associated with the pathogenesis of EH.

In order to identify novel mtDNA mutations involved in the pathogenesis of EH in a Chinese population, we initiated a systematic and extended mutational screening of mtDNA in a large cohort of EH subjects from Guangzhou area, Guangdong Province. Here we describe a Han Chinese family with EH carrying the homoplasmic A4401G and T5655C mutations in the mitochondrial genome.

METHODS

Subjects: As part of a genetic screening program for EH, a Chinese Han family with maternally inherited EH was identified at the Third Affiliated Hospital of Guangzhou Medical University. Informed consent, blood samples, and clinical evaluation were obtained from all participating family members under protocols approved by the Ethics Committee of Guangzhou Medical University. Members of this family were interviewed and evaluated to identify both personal and medical histories of EH and other clinical abnormalities. A healthy control population of 200 individuals was obtained from a...
panel of unaffected Han Chinese residents from the same area. Members of this Chinese family underwent a physical examination, laboratory assessment of cardiovascular disease risk factors, and routine electrocardiography. An experienced physician measured the systolic and diastolic blood pressures of subjects with a mercury column sphygmomanometer using a standard protocol. The first and fifth Korotkoff sounds were taken to be indicative of systolic and diastolic blood pressures, respectively. The average of such readings was taken as the examination blood pressure. EH was defined according to the recommendation of the Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure (JNC VI) as a systolic blood pressure of 140 mmHg or higher and/or a diastolic blood pressure of 90 mmHg or greater.

Mutational analysis of mitochondrial tRNA (mt-tRNA) genes: To determine whether mt-tRNA mutations played important roles in EH, we performed a screening for the candidate pathogenic mt-tRNA mutations in the proband (III-4) and matrilineal relatives (I-2, II-4, II-6, III-3). All these experiments were carried out at the Guangzhou Institute of Obstetrics and Gynecology of the Third Affiliated Hospital of Guangzhou Medical University. Briefly, the genomic DNA was isolated from whole blood cells of participants using Puregene DNA Isolation Kits (Gentra Systems, Minneapolis, MN). The entire mt-tRNA genes of the participants were PCR amplified using the primers as previously described. Each fragment was purified and subsequently analyzed by direct sequencing in an ABI 3700 automated DNA sequencer (Applied Biosystems, Inc, Foster City, CA) using a Big Dye Terminator Cycle sequencing reaction kit. The resultant sequence data were compared with the reversed Cambridge sequence (GenBank accession No. NC_012920).

Phylogenetic conservation analysis: To analyze the phylogeny of mt-tRNA mutations, we used vertebrate mtDNA sequences for inter-specific analysis; these species included *Elephas maximus, Macropus robustus, Homo sapiens, Hylobates lar, Macaca mulatta, Pan paniscus, Pan troglodytes, Capra hircus, Lama pacos,* and *Orycteropus afer.* The conservation index (CI) was then calculated by comparing the human nucleotide variants with the other species. Notably, the CI≥75% was considered as functional potential.

Determination of pathogenicity: We further used the pathogenicity scoring system to predict the potential pathogenic role of mt-tRNA mutations. According to that standard, an mt-tRNA mutation was regarded as “definitely pathogenic” with a total score of more than 11 points, if the score was between 7-10 points, it belonged to “possibly pathogenic”, whereas a score that was less than 6 points should be classified as “neutral polymorphism”.

Results

Clinical features: The proband (III-4) was a 32-year-old woman who came from Guangzhou area of Guangdong Province. She first experienced hypertension when she was 29 years-old. She went to the hypertension clinic of the Third Affiliated Hospital of Guangzhou Medical University for further clinical evaluations, at which time her blood pressure was 155/90 mmHg. Physical examination, laboratory assessment of cardiovascular risk factors, and routine electrocardiography showed that she did not have any other clinical abnormalities such as diabetes, vision loss, hearing impairment, or renal and neurological disorders. Therefore, she exhibited a typical EH. As shown in Figure 1 and Table 1, the average age at onset of EH in the maternal kindred varied from 29 years to 70 years, with an average of 47 years. There was no evidence that any member of this family had any other cause to account for EH. Therefore, the inheritance pattern of this family was consistent with maternal inheritance.

Phylogenetic conservation analysis: Because previous studies showed that mt-tRNAs were the hot spots for pathogenic mutations associated with EH, we aimed to evaluate the role of mt-tRNA mutations in EH expression. As shown in Figure 2, the homoplasmic A4401G and T5655C mutations were identified by direct Sanger sequencing. Of note, the well-known A4401G mutation was localized at the adjacent site of tRNAAla and tRNAAsn. In contrast, the T5655C mutation occurred at the 5’ end of tRNAAsn and the first nucleotide adenine was replaced with guanine (Figure 4). Moreover, as shown in Figure 3, the T5655C mutation was highly conserved between different species (CI = 100%), which indicated that it may play an important role in EH expression (Figure 3).

Determination of pathogenicity: According to the revised pathogenicity scoring system, we classified the tRNAAla T5655C mutation as “definitely pathogenic” with a total score of 17 points (Table II).

![Figure 1](image.png)

Figure 1. A Han Chinese family with essential hypertension (EH). Affected individuals are indicated by filled symbols, and the arrow denotes the proband (III-4).

Table 1. Summary of Clinical Data for Several Members in This Chinese Family

<table>
<thead>
<tr>
<th>Subject</th>
<th>Gender</th>
<th>Age at test (years)</th>
<th>Age at onset (years)</th>
<th>Systolic Pressure (mmHg)</th>
<th>Diastolic Pressure (mmHg)</th>
<th>Presence of mt-tRNA mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>Female</td>
<td>84</td>
<td>70</td>
<td>145</td>
<td>95</td>
<td>T5655C, A4401G</td>
</tr>
<tr>
<td>II-4</td>
<td>Female</td>
<td>59</td>
<td>55</td>
<td>160</td>
<td>80</td>
<td>T5655C, A4401G</td>
</tr>
<tr>
<td>II-6</td>
<td>Female</td>
<td>58</td>
<td>54</td>
<td>180</td>
<td>95</td>
<td>T5655C, A4401G</td>
</tr>
<tr>
<td>III-3</td>
<td>Female</td>
<td>33</td>
<td>30</td>
<td>145</td>
<td>90</td>
<td>T5655C, A4401G</td>
</tr>
<tr>
<td>III-4</td>
<td>Female</td>
<td>32</td>
<td>29</td>
<td>155</td>
<td>90</td>
<td>T5655C, A4401G</td>
</tr>
<tr>
<td>III-1</td>
<td>Male</td>
<td>30</td>
<td>/</td>
<td>130</td>
<td>75</td>
<td>None</td>
</tr>
</tbody>
</table>
DISCUSSION

In this study, we have performed the clinical, genetic, and molecular characterization of a Han Chinese family with high penetrance of EH. EH as the sole clinical phenotype only presented in the maternal lineage of this pedigree, the inherited pattern provided a clear indication for the mtDNA mutations being responsible for the phenotype. In particular, the age of onset of this family ranged from 29 to 70 years, and the matrilineal relatives had an earlier age at onset of EH, suggesting that mitochondrial sequence variants may be a risk factor for this disease.

Mitochondria are important vital energy producing organelles in eukaryotic cells and are primarily responsible for generating ATP by OXPHOS. Recently, increasing evidence has shown that mitochondrial dysfunction caused by mtDNA mutations plays an important role in the development of EH, and mitochondrial dysfunction will increase the production of reactive oxygen species (ROS), which will lead to oxidative stress, loss of nitric oxide signaling and endothelial barrier function, and infiltration of leukocytes into the vascular wall, and thus, contribute to high blood pressure. Today, approximately 200 pathogenic mutations had been mapped to mt-tRNA genes (http://www.mitomap.org/MITOMAP), emphasizing the importance of mt-tRNAs for mitochondrial function.

In this study, we identified two mutations: A4401G in the junction between the tRNA^Met at the heavy strand (H-strand) and tRNA^Gln at the light strand (L-strand), as well as the T5655C in tRNA^Ala (Figure 2 and 4). These mutations were present only in matrilineal relatives of this family in the homoplasmic form but not in 200 healthy controls. Of these, the
A4401G mutation was identified in several Chinese families with hypertension and was implicated to cause a failure in tRNA metabolism.21,22 The 5' end of the flanking sequence is 4401A/AG-TAAG in the tRNA\textsubscript{Met} gene, whereas the 5' end of the flanking sequence is 4401T/GAGAT in the tRNA\textsubscript{Glu} gene.23 In fact, the processing of mt-tRNAs requires the precise endonucleolytic cleavage at both the 3' and 5' ends catalyzed by RNase P and 3' endonuclease.24,25 Thus, the A4401G mutation may affect the reaction efficiency of the RNase P involved in tRNA\textsubscript{Met} and tRNA\textsubscript{Glu} 5' end metabolism. Functional characterization of cell lines carrying this mutation showed a significant reduction of the steady-state level of tRNA\textsubscript{Met} and tRNA\textsubscript{Glu}. In addition, the A4401G mutation caused the defects in mitochondrial protein synthesis and respiratory chain function. On the other hand, the homoplasmic T5655C mutation, combined with the ND1 T3308C mutation, was first described in an African family with maternally inherited aminoglycoside-induced and non-syndromic hearing impairment carrying the tRNA\textsubscript{Leu(UUR)} gene.26 As shown in Figure 3, the T5655C mutation occurred at the position which was highly conserved between different species. Interestingly, the T5655C mutation produced an approximate 50% reduction in the tRNA\textsubscript{Leu(UUR)} level, whereas the ND1 T3308C mutation caused significant decreases both in the amount of ND1 mRNA and co-transcribed tRNA\textsubscript{Leu(UUR)} in mutant cells. Therefore, the co-existence of the T5655C mutation and T3308C mutation may contribute to the high penetrance and expressivity of deafness-associated T7511C mutation.27 Moreover, a previous study indicated that the T5655C mutation played an important role in the recognition of aminoacyl-tRNA synthetase.28 The significant decrease in tRNA\textsubscript{Leu(UUR)} steady-state levels in the mutant cybrid carrying the T5655C mutation may result from a failure to aminoacylate properly and of post-transcriptional modification of this tRNA.29

Based on these findings, we propose that the molecular mechanism underlying the T5655C and A4401G mutations in the pathogenesis of EH may be as follows: first, these mutations caused the alternation of mt-tRNA secondary structure which will subsequently result in the failure in mt-tRNA metabolism, including decreases in the tRNA steady state level and aminoacylation, which will eventually lead to decreased mitochondrial protein synthesis. Defects in mitochondrial translation consequently lead to a respiratory phenotype and a decline in ATP production below the threshold level required for endothelial cell function,28 thereby contributing to the high blood pressure. This is the first time that a study has provided direct evidence for the hypertension associated mitochondrial A4401G and T5655C mutations.

DISCLOSURE

The authors have no conflicts of interest to disclose.

REFERENCES

Table II. Pathogenicity Scoring System for T5655C Mutation

<table>
<thead>
<tr>
<th>Scoring criteria</th>
<th>T5655C mutation</th>
<th>Score</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than one independent report</td>
<td>Yes</td>
<td>2</td>
<td>≤ 6 points: neutral polymorphisms;</td>
</tr>
<tr>
<td>Evolutionary conservation of the base pair</td>
<td>No changes</td>
<td>2</td>
<td>7-10 points: possibly pathogenic;</td>
</tr>
<tr>
<td>Variant heteroplasy</td>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Segregation of the mutation with disease</td>
<td>Yes</td>
<td>2</td>
<td>11-13 points (not including evidence from single-fiber studies): possibly pathogenic;</td>
</tr>
<tr>
<td>Histochemical evidence of mitochondrial disease</td>
<td>Strong evidence</td>
<td>2</td>
<td>≥ 11 points (including trans-mitochondrial cybrid studies): definitely pathogenic.</td>
</tr>
<tr>
<td>Biochemical defect in complex I, III or IV</td>
<td>Yes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Evidence of mutation segregation with biochemical defect from single-fiber studies</td>
<td>Yes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mutant mt-tRNA steady-state level or evidence of pathogenicity in trans-mitochondrial cybrid studies</td>
<td>Strong evidence</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Maximum score</td>
<td></td>
<td>17</td>
<td>Definitely pathogenic</td>
</tr>
</tbody>
</table>
25. Levinger L, Jacobs O, James M. In vitro 3’-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(U CN)) precursor with the U7445C substitution, which causes nonsyndromic deafness. Nucleic Acids Res 2001; 29: 4334-40.