The Role of Histamine and Catecholamine on the Blood Pressure Regulation Mechanism in Spontaneously Hypertensive Rats

Itaru YOMAIDA,* Yoshio MONMA,*** and Hideya SAITO**

It has been reported that vasoactive amines such as catecholamine are related to the blood pressure regulation mechanism. It has been already realized that histamine has a physiological action opposite to norepinephrine in blood pressure regulation. But no precise conclusion have been obtained regarding the role of histamine in blood pressure regulation. The present experiments were undertaken to examine histamine and catecholamine content in various tissues in spontaneously hypertensive rats (SHR). The effect of clonidine on these biogenic amines in SHR was also studied.

Methods:
In the experiments we used male SHR (Okamoto-Aoki) and Wistar Kyoto rats (WKY) donated by department of pharmacology, Jichi Medical school (Tochigi, Japan). Endogenous histamine was measured by enzymatic double isotopic method. Endogenous catecholamine was assayed by the method of THI reaction. For the measurement of blood pressure and heart rate, the tail plethysmographic method was used. In the experiments for the turnover rate of 3H-norepinephrine in brainstem, the method by Glowinski and Axelrod was used. 3H-norepinephrine at a dose of 5 μCi/rat was injected into the lateral ventricle, and at 1, 12, and 24 hours after the injection, the rats were decapitated and the 3H-norepinephrine of the brainstem was measured. In the experiments of the turnover rate of 3H-norepinephrine in heart, 3H-norepinephrine at a dose of 20 μCi/Kg was injected into femoral vein. For the measurement of 2H-norepinephrine, Packard’s sample oxidizer and liquid scintillation counter were used. From the disappearance curve of the 3H-norepinephrine the turnover rate of norepinephrine was obtained by norepinephrine content (μg/Gm)\times elimination rate constant (hr$^{-1}$). In the experiments for the effect of clonidine on histamine and catecholamine content in SHR, 1 month administration of clonidine (300 μg/Kg/day p.o.) was studied. SHR [14 weeks of age, systolic blood pressure 212.7 mmHg±3.0 (S.E.), heart rate 425 beats/min±9.0 (S.E.)] was divided into 2 groups. The first group of SHR was as the control group and fed on oriental rat chow as the regular diet. The second group of SHR was taken as clonidine administered group and fed on clonidine mixed diet. In the test diet, clonidine was thoroughly mixed with regular diet at a rate of $4.9\times10^{-4}\%$. As a rat weighing 330 Gm eats ca. 20 Gm of the diet a day, the estimated clonidine dose was ca. 300 μg/Kg/day.
Results:
Regarding the tissue histamine content in SHR and WKY, endogenous histamine content in brainstem, heart, and kidneys was significantly increased in SHR at 8 weeks of age as compared with those of control WKY. However, at 18 weeks of age, no significant difference was observed in histamine content of brainstem, heart, and kidneys between SHR and WKY. Regarding catecholamine content of brainstem, heart, and adrenal glands, no significant difference was seen between SHR at 14 weeks of age and age matched WKY. However, the turnover rate of 3H-norepinephrine tended to decrease in SHR as compared with WKY. In contrast, turnover rate of 3H-norepinephrine in heart was increased in SHR as compared with WKY. One month administration of clonidine (300 µg/Kg/day p.o.) produced hypotension, bradycardia, and weight loss. Therefore, clonidine at this dose was considered to be toxic. Regarding histamine content in SHR treated with clonidine for 1 month, insignificant increase was seen in brainstem, while no change of histamine content was seen in heart and kidneys. With regard to brainstem norepinephrine content, no significant difference was seen between clonidine administered group of SHR and control SHR under the same experimental conditions.

Discussion and Conclusion:
One of the most interesting observations in the present experiments was that endogenous histamine content of brainstem, heart, and kidneys in SHR at 8 weeks of age was significantly increased as compared with those of WKY. The tissue histamine content in SHR at 18 weeks of age showed no significant difference between SHR and age matched WKY. Therefore, it will be speculated that increase of histamine content in young SHR may be related to the initiation mechanism of hypertension under the consideration that the endogenous histamine is associated with the blood pressure regulation.