International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Large-Scale Point Cloud Processing
A 3D Shape-Measuring System for Assessing Strawberry Fruits
Nobuo KochiTakanari TanabataAtsushi HayashiSachiko Isobe
著者情報
ジャーナル オープンアクセス

2018 年 12 巻 3 号 p. 395-404

詳細
抄録

Plant shape measurements have conventionally been conducted in plant science by classifying their shape features, by measuring their widths and lengths with a Vernier caliper, or by similar methods. Those measurements rely heavily on human senses and manual labor, making it difficult to acquire massive data. Additionally, they are prone to large measurement differences. To cope with those problems of conventional measuring methods, we are developing a three-dimensional (3D) shape-measuring system using images and a reliable assessment technique. 3D objects enable us to assess and measure shape features with high accuracy and to automatically measure volume, which conventional methods cannot. Thus, our new system is capable of automatically and efficiently measuring objects. Our goal is to obtain wide acceptance of our method at actual research sites. Unlike industrial products, it is difficult to properly assess the measurements of plants because of their object fluctuations and shape complexities. This paper describes our automatic 3D shape-measuring system, the method for assessing measurement accuracy, and the assessment results. The measurement accuracy of the developed system for strawberry fruits is 0.6 mm or less for 90% or more of the fruit and 0.3 mm or less for 80%. This evidence supports the system’s capability of shape assessment. The developed system can fully automate photographing, measuring, and modeling objects and can semi-automatically analyze them, reducing the time required for the entire process from the conventional time of 6–7 h to 1.5 h. The developed system is designed for users with no technical knowledge so that they can easily use it to acquire 3D measurement data on plants. Thus, we intend to expand measurable objects from strawberry fruits to other plants and their parts, including leaves, stalks, and flowers

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top