International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Laser-Based/Assisted Manufacturing
Study on the Creation of Fine Periodic Structure on V-Shaped Groove with Short-Pulsed Laser
Ryohei TakaseShuhei KodamaKeita ShimadaHolger MeschederKai WinandsJan RiepeKristian ArntzMasayoshi MizutaniTsunemoto Kuriyagawa
Author information
JOURNAL OPEN ACCESS

2020 Volume 14 Issue 4 Pages 601-613

Details
Abstract

Functional surface creation technologies have garnered increasing attention over the years. These technologies can provide various functions to a material by establishing a fine structure on the material surface and responding to the needs of industrial products with distinguished functions or high values. In addition, by creating a “composite fine structure,” which is composed of two kinds of structures with different scales, the enhancement of functions and emergence of new functionalities can be expected. Hence, our study combined a micrometer-scale V-shaped groove structure using an ultra-precision cutting and nanometer-scale ultra-fine periodic structure (LIPSS) using a short-pulsed laser. Then, we clarified the creation principle and studied the functionality of the structure, specifically, its wettability. As a result, it was found that optical behavior inside the V-shaped groove changed; therefore, the composite structure changed depending on the groove angle, laser polarization direction, and number of times of irradiation. In addition, it was found that the water wettability changed depending on the type of formed micro-nano composite structures. Moreover, the wettability could be controlled by depending on how the structure is used.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top