International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Digital Geometry Processing for Large-Scale Structures and Environments
Forest Data Collection by UAV Lidar-Based 3D Mapping: Segmentation of Individual Tree Information from 3D Point Clouds
Taro SuzukiShunichi ShiozawaAtsushi YamabaYoshiharu Amano
ジャーナル オープンアクセス

2021 年 15 巻 3 号 p. 313-323


In this study, we develop a system for efficiently measuring detailed information of trees in a forest environment using a small unmanned aerial vehicle (UAV) equipped with light detection and ranging (lidar). The main purpose of forest measurement is to predict the volume of wood for harvesting and delineating forest boundaries by tree location. Herein, we propose a method for extracting the position, number of trees, and vertical height of trees from a set of three-dimensional (3D) point clouds acquired by a UAV lidar system. The point cloud obtained from a UAV is dense in the tree’s crown, and the trunk 3D points are sparse because the crown of the tree obstructs the laser beam. Therefore, it is difficult to extract single-tree information from 3D point clouds because the characteristics of 3D point clouds differ significantly from those of conventional 3D point clouds using ground-based laser scanners. In this study, we segment the forest point cloud into three regions with different densities of point clouds, i.e., canopy, trunk, and ground, and process each region individually to extract the target information. By comparing a ground laser survey and the proposed method in an actual forest environment, it is discovered that the number of trees in an area measuring 100 m × 100 m is 94.6% of the total number of trees. The root mean square error of the tree position is 0.3 m, whereas that of the vertical height is 2.3 m, indicating that single-tree information can be measured with sufficient accuracy for forest management.



© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
前の記事 次の記事