Paper:

Machining Performance of Robot-Type Machine Tool
Consisted of Parallel and Serial Links
Based on Calibration of Kinematics Parameters

Keisuke Nagao, Nobuaki Fujiki, Hirotu Tanaka, Akio Hayashi,
Hidetaka Yamaoka, and Yoshitaka Morimoto†

Kanazawa Institute of Technology
7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
†Corresponding author, E-mail: mosandb1@neptune.kanazawa-it.ac.jp
[Received February 16, 2021; accepted April 20, 2021]

This study aims to calibrate the posture of a robot-type machine tool comprising parallel and serial links using a kinematics error model and verify the machining performance based on the measurement results of a machined workpiece calibrated with kinematics parameters. A robot-type machine tool (XMINI, Exechon Enterprises LLC) is used in this study. Typically, the performance required of a robot-type machine tool is not only dimensional accuracy but also the contour accuracy of the machined workpiece. Therefore, in this study, we first construct a forward kinematics model of a robot-type machine tool and identify the kinematics parameters used in it via spatial positioning experiments using a coordinate measuring machine. Based on the parameter identification results, we calibrate this robot-type machine tool and evaluate its machining performance in terms of the dimensional accuracy and contour accuracy of the machined workpiece.

Keywords: parallel mechanism, calibration, forward kinematics, articulated arm coordinate measuring machine (AACMM), robot-type machine tool (RTMT)

Nomenclature

axis 1, 2, 3 Length of one-, two-, and three-axes
axis C, A Angle of C- and A-axes
ϕ Angle of joint; approximate solution of nonlinear simultaneous equations
O_B, M, T Coordinate system of base, moving platform, and tool tip coordinate
R Joint of 1-axis from base
S Joint of 2-axis from base
T Joint of 3-axis from base
R', S', T' Points in X-direction from points R, S, T
S'' Point in Y-direction from point S
P Position vector from Om to each point
λ Error vector from each point
b Vertical error at base of 1-axis, 2-axis, and 3-axis
f Offset in X-direction of 2-axis
e Offset in Y-direction of 2-axis
B Intersection of 1-axis, 2-axis, 3-axis, and moving platform
B1X, B1Y, B1Z Coordinate of B1 from Om
B2X, B2Y, B2Z Coordinate of B2 from Om
B3X, B3Y, B3Z Coordinate of B3 from Om
w2x, w2y Rotation of vector w2 in each direction
R_x, R_y Length of perpendicular line of C-axis and A-axis
X_a, Y_a, Z_a Coordinates from A-axis to Ot
r Theoretical distance of length from one measurement point to another
r_T The value of r_T when an error is assigned to a single kinematic parameter
r Measurement distance
J Jacobian matrix
E_t Error array
E_p Correction values of kinematic parameter error

1. Introduction

The parallel mechanism exhibits excellent features such as high rigidity, high accuracy, and high speed compared with industrial robots composed of only serial links. The parallel mechanism, which began with the Stewart platform announced in 1965, has been investigated for applications such as manipulators, handling robots, coordinate measuring machines, and machine tools [1–7]. For machine tools particularly, structural shapes such as hexapods and tripods have been devised, and tripods are the most typical shape used because of their high rigidity owing to the small number of joints [6, 7].

Machine tools that employ a parallel link mechanism have been developed by the following manufacturers: Giddings & Lewis, Hexel Corporation, Ingersoll Milling Machine Company, Okuma Corporation, and JTEKT Corporation. The hexapod-type structure, in which the spindle is mounted on the platform, has become the main-
Meanwhile, tripod-type machine tools are manufactured by Metron, Loxin, and Exechon. This type of machine tool has the same degree of freedom (DOF) as a five-axis machining center, and the spindle is attached to a platform such as a hexapod. Among them, the Exechon robot-type machine tool (RTMT) used in this study exhibits a tripod structure composed of a three-axis telescopic shaft and a moving platform; moreover, by attaching the C- and A-axes to the platform, the movable range of the tool tip position was successfully widened. Furthermore, Exechon proposed an RTMT with a new parallel mechanism that exhibits a CFRP structure with higher rigidity than other milling machines [9–11]. This machine comprises a parallel mechanism (one- to three-axis) and a serial mechanism (A- and C-axes), which is a type of five-axis machine tool. A moving platform with the same function as the Stewart platform is mounted on the ends of the three axes to support the A- and C-axes, as shown in Fig. 1, and the specifications are listed in Table 1. This machine tool enables a relatively wide, lightweight, and easy to disassemble and/or move working space to be secured. However, when this machine tool is used for machining, estimations of the dimensional errors, assembly errors, tool trajectory, and positioning errors must be solved (hereinafter referred to as calibration). The tool endpoint posture must be compensated based on the estimated kinematic parameters via calibration.

Many studies have focused on the calibration method for kinematics machine tools [13–25]. Forward kinematics problems have been investigated for various types of kinematics machines [26–28].

In a study pertaining to a tripod-type machine tool manufactured by Exechon, Trinh et al. discovered a solution to the forward kinematics problem [11]. In addition, Bi developed a stiffness model based on the Exechon concept [29].

The authors developed a solution for the forward kinematics problem by adopting the proposed calibration method [13, 19]. This method uses an articulated arm coordinate measuring machine (AACMM). It is not necessary to strictly define the position and orientation of the AACMM coordinate to that of the target machine tool. The advantage of this method is that the unknown kinematics parameters can be estimated by measuring the distances between two points and by extracting the machine coordinates from the CNC controller. The measurements are obtained repetitively by the number of unknowns using the distance acquired by the AACMM at different points. In addition, compared with the DBB measurement method, the measurable space was extremely wide, thereby allowing various postures that are acceptable for calibration measurement to be set. Small robot machine tools, such as the RTMT, can be relocated frequently. However, the values of the kinematics parameters will change based on the relocated positions. Therefore, a simple and easy-to-apply calibration operation is required.

Because this RTMT exhibits orthogonal anisotropic rigidity based on the position, many problems related to machining accuracy arise when performing contour machining using this machine tool. Therefore, the RTMT, which is primarily used by installing it on rails or by suspending it on a ceiling as a gantry and rendering it movable in a factory, has been developed primarily for drilling pilot holes on body riveting airplanes. Therefore, in this study, we primarily focused on improving the accuracy of drilling and boring after performing spatial positioning. Improving the performance of contour machining accuracy is another issue to be addressed in this study.

This paper reports the improved positioning accuracy and machining performance of a test workpiece based on a previously proposed calibration method.
2. Identification of Kinematic Parameters by Proposed Calibration Method

2.1. Geometric Arrangement for Forward Kinematics

The results of positioning control and machining performance based on the calibration method are presented in this section.

Figure 2 shows the skeleton diagram of the RTMT, which is a five-axis machine tool that combines a parallel mechanism with three telescopic axes (three degrees of freedom (3-DOFs)), and a pair of serial mechanisms comprising two rotating axes (2-DOFs). The three telescopic axes were positioned by controlling each length unit (axis 1 mm, axis 2 mm, axis 3 mm), and the other two axes were controlled by rotational angle units (axis-C°, axis-A°). These axes have axis variables \(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6, \phi_7, \phi_8 \), which are expressed by nonlinear simultaneous equations using angular units “degree.” These are included in the position vector, as is shown later. \(O_B, O_M, \) and \(O_T \) are the coordinates of the base, moving platform, and tool tip, respectively.

The positions of each coordinate system are shown in Fig. 2. The joint points of each axis and base are \(R, S, \) and \(T \), respectively. Points \(R', T', \) and \(S' \) are points in the X-direction from points \(R, T, \) and \(S \), respectively, and \(S'' \) is point \(S \) in the Y-direction. The position vectors from \(O_M \) to points \(R, S, T, R', S', S'' \), and \(T' \) are denoted as \(P_R, P_S, P_T, P_{R'}, P_{S'}, P_{S''}, \) and \(P_{T'} \), respectively. It is noteworthy that subscripts \(X, Y, \) and \(Z \), such as those in the expression of \(P_{RX} \), represent the position vector components [13, 19].

2.2. Obtained Kinematics Parameters Correction Value

The data acquired to calculate the kinematics parameters were the distances between representative points. The relationship between the minute displacement \(\delta P \) of the kinematic parameter \(P \) is expressed as follows using \(m \) (the \(m_{th} \) number of \(r \) and \(r_T \)) and \(n \) (the \(n_{th} \) number of the kinematics parameters). Here, \(r_T \) is the square root of the sum of the squared differences between the coordinates of the two measured points.

\[
\delta r_T = \frac{\Delta r_T}{\Delta P_1} \delta P_1 + \frac{\Delta r_T}{\Delta P_2} \delta P_2 + \cdots + \frac{\Delta r_T}{\Delta P_n} \delta P_n \quad (1)
\]

Assuming that the minute displacement \(\delta r_T \) of the theoretical value \(r_T \) is replaced by the difference between the measured value \(r \) and the theoretical value \(r_T \), Eq. (1) can be rewritten as follows:

\[
r_m - r_T = \frac{\Delta r_T}{\Delta P_1} \delta P_1 + \frac{\Delta r_T}{\Delta P_2} \delta P_2 + \cdots + \frac{\Delta r_T}{\Delta P_n} \delta P_n \quad (2)
\]

It is difficult to obtain the total derivative \(r_T \) because \(r_T \) contains the solution of the nonlinear simultaneous equations, and the kinematic parameters are included in the constraints; \(\phi_i \), is a variable of the kinematic parameters. However, in the forward kinematics problem, the numerical value of the approximated \(\phi_i \) can be substituted. Therefore, \(\phi_i \) cannot be partially differentiated using kinematics parameters. To solve this problem, assuming that \(r_T \) is defined as \(r_{TP} \) when an arbitrary error is assigned only to variable \(P_n \), Eq. (2) can be transformed as shown in the following equation.

\[
\frac{\Delta r_T}{\Delta P_n} = \frac{r_{TPm} - r_T}{\delta P_n} \quad \cdots \quad (3)
\]

Hence, the Jacobian matrix \(J \) is transformed as follows:

\[
J = \begin{pmatrix}
\frac{r_{TP1} - r_T}{\delta P_1} & \cdots & \frac{r_{TPm} - r_T}{\delta P_n}
\end{pmatrix} \quad (4)
\]

Deriving the difference between \(r_T \) and \(r \), the array \(E_r \) is defined as shown in the following equation:

\[
E_r = [r_1 - r_{T1} \quad r_2 - r_{T2} \quad \cdots \quad r_m - r_{Tm}]^T \quad (5)
\]

Next, the correction value \(E_P \) of the kinematics parameters is calculated using the following equation:

\[
E_P = (J^T J)^{-1} J^T E_r \quad \cdots \quad (6)
\]

As a result of the correction, the calculation is terminated when \(E_r \) is within the required accuracy. Otherwise, the least-squares calculation is repeated using the modified \(E_r \) until it converges to a certain value (target tolerance: 5e-07 µm).

3. Parameter Identification Results

A total of 26 kinematics parameters are shown in Fig. 2. Because of redundancy, 23 kinematics parameters are to be identified. Therefore, some kinematics parameters were omitted or integrated. Because \(\lambda_3 \) and \(\lambda_4 \) are completely redundant, \(\lambda_4 \) is omitted. Additionally, \(B_{1Y} \) and \(B_{3Y} \) are redundant because \(B_{1Y} \) and \(B_{3Y} \) have the same...
It was previously reported that the measurement points should be arranged in a wide three-dimensional space [10, 11]. Therefore, the measurement points were placed as far from each other as possible within the movable range of the RTMT.

The measurement points were set such that the mechanical parameters were not redundant. Two points were sequentially extracted from the measurement points acquired in this manner, and the distance between each point was calculated. The measurement points are shown in Fig. 3. The number of measurement points was 102, and the number of distances \(r \) to be acquired from these points was 2432.

In this experiment, the AACMM (FAROR® Gage), as shown in Fig. 4 and Table 2 (specifications), was used by attaching the base plate and end of the \(A \)-axis of the RTMT. The room temperature was set to 20°C [22], and the experiments were conducted twice. The coordinates were acquired by positioning the RTMT at each measurement point. The AACMM settings and coordinate acquisition were based on the xCAL software provided by Exechon Enterprises LLC.

When \(r_T \) was acquired beyond the center shown in length.

It was previously reported that the measurement points should be arranged in a wide three-dimensional space [10, 11]. Therefore, the measurement points were placed as far from each other as possible within the movable range of the RTMT.

The measurement points were set such that the mechanical parameters were not redundant. Two points were sequentially extracted from the measurement points acquired in this manner, and the distance between each point was calculated. The measurement points are shown in Fig. 3. The number of measurement points was 102, and the number of distances \(r \) to be acquired from these points was 2432.

In this experiment, the AACMM (FAROR® Gage), as shown in Fig. 4 and Table 2 (specifications), was used by attaching the base plate and end of the \(A \)-axis of the RTMT. The room temperature was set to 20°C [22], and the experiments were conducted twice. The coordinates were acquired by positioning the RTMT at each measurement point. The AACMM settings and coordinate acquisition were based on the xCAL software provided by Exechon Enterprises LLC.

When \(r_T \) was acquired beyond the center shown in

![Fig. 3. Position layout of distance measurements.](image)

![Fig. 4. Experimental setup for measuring distance using coordinate measuring machine.](image)

![Table 2. Specifications of FAROR® Gage.](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>mm</td>
<td>0.018</td>
</tr>
<tr>
<td>Spherical working volume</td>
<td>m</td>
<td>1.2</td>
</tr>
<tr>
<td>Can be measured</td>
<td>Position, posture*</td>
<td></td>
</tr>
</tbody>
</table>

*Do not use posture

![Table 3. Calculation result.](image)

<table>
<thead>
<tr>
<th>Number of least-squares runs</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1) mm</td>
<td>0.505</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>(\lambda_2) mm</td>
<td>1.062</td>
<td>1.060</td>
<td>1.060</td>
<td>1.060</td>
</tr>
<tr>
<td>(\lambda_3) mm</td>
<td>0.622</td>
<td>0.638</td>
<td>0.640</td>
<td>0.638</td>
</tr>
<tr>
<td>(\lambda_4) mm</td>
<td>-Redundant parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b_1) mm</td>
<td>0.108</td>
<td>0.189</td>
<td>0.195</td>
<td>0.191</td>
</tr>
<tr>
<td>(b_2) mm</td>
<td>-0.452</td>
<td>-0.385</td>
<td>-0.379</td>
<td>-0.384</td>
</tr>
<tr>
<td>(b_3) mm</td>
<td>0.076</td>
<td>0.006</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>(f) mm</td>
<td>0.592</td>
<td>0.736</td>
<td>0.817</td>
<td>0.773</td>
</tr>
<tr>
<td>(e) mm</td>
<td>1.040</td>
<td>1.022</td>
<td>1.020</td>
<td>1.020</td>
</tr>
<tr>
<td>(B_{3X}) mm</td>
<td>-0.029</td>
<td>-0.019</td>
<td>-0.018</td>
<td>-0.018</td>
</tr>
<tr>
<td>(B_{3Y}) mm and (B_{3Z}) mm</td>
<td>-0.757</td>
<td>-0.738</td>
<td>-0.741</td>
<td>-0.739</td>
</tr>
<tr>
<td>(B_{3Z}) mm and (B_{3Z}) mm</td>
<td>0.444</td>
<td>0.436</td>
<td>0.436</td>
<td>0.435</td>
</tr>
<tr>
<td>(B_{3X}) mm and (B_{3Z}) mm</td>
<td>-0.545</td>
<td>-0.652</td>
<td>-0.723</td>
<td>-0.686</td>
</tr>
<tr>
<td>(B_{3X}) mm</td>
<td>0.549</td>
<td>0.557</td>
<td>0.557</td>
<td>0.557</td>
</tr>
<tr>
<td>(B_{3Y}) mm</td>
<td>0.746</td>
<td>0.735</td>
<td>0.735</td>
<td>0.734</td>
</tr>
<tr>
<td>(w_{2Y}) mm</td>
<td>0.411</td>
<td>0.423</td>
<td>0.423</td>
<td>0.423</td>
</tr>
<tr>
<td>(w_{2Z}) mm</td>
<td>-0.033</td>
<td>-0.033</td>
<td>-0.033</td>
<td>-0.033</td>
</tr>
<tr>
<td>(R_x)</td>
<td>0.029</td>
<td>0.034</td>
<td>0.036</td>
<td>0.035</td>
</tr>
<tr>
<td>(R_y)</td>
<td>-0.122</td>
<td>-0.120</td>
<td>-0.120</td>
<td>-0.120</td>
</tr>
<tr>
<td>(R_y)</td>
<td>-0.211</td>
<td>-0.021</td>
<td>-0.021</td>
<td>-0.021</td>
</tr>
<tr>
<td>(c) mm</td>
<td>-0.071</td>
<td>-0.069</td>
<td>-0.069</td>
<td>-0.069</td>
</tr>
<tr>
<td>(X_1) mm</td>
<td>-0.090</td>
<td>-0.088</td>
<td>-0.087</td>
<td>-0.087</td>
</tr>
<tr>
<td>(X_1) mm</td>
<td>0.147</td>
<td>0.147</td>
<td>0.147</td>
<td>0.147</td>
</tr>
<tr>
<td>(Z_1) mm</td>
<td>-1.534</td>
<td>-1.533</td>
<td>-1.533</td>
<td>-1.533</td>
</tr>
</tbody>
</table>

4. Machining Test and its Evaluation

In this study, a machining accuracy evaluation test was conducted based on ISO 10791-7:2020 (JIS B 6336-7), “Accuracy of Finished Test Pieces” [30]. Table 4 presents an outline of the machining test. Fig. 6(a) shows the shape and data of the test piece. The specimen setting at the base...
of the RTMT is shown in Fig. 6(b). Regarding the shape of the workpiece, the outer diameter was changed from 160 to 158 mm owing to the limited movable range of the RTMT.

Although the tool in the upward/downward direction can be positioned based on the A- and C-axes, the tool direction was set in the downward direction in this study. Therefore, the problems caused by the dynamic behavior of the A- and C-axes were negligible.

The workpiece was fabricated using an aluminum alloy (A2017AP, AlCu4MgSi (A)). The tool used was a square-type φ30 mm end mill. A center hole was drilled in advance using a φ25 mm twist drill and then finished to φ26 mm using the boring tool.

The other holes were spirally machined with a φ13 mm diameter two-flute square end mill. The cutting speed was slower than the ISO recommended value; however, it was determined by considering the machined surface properties of the workpiece obtained during the preliminary experiment. In particular, the machining conditions were set such that chatter vibrations did not occur during workpiece contouring from prior experiments.

Regarding the end mill, the feed rate per tooth was set
Table 5. Measured geometric tolerance.

<table>
<thead>
<tr>
<th>No.</th>
<th>Geometric tolerance</th>
<th>Initial setting</th>
<th>1st calibrate</th>
<th>2nd calibrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylindricity of data form C (borehole)</td>
<td>0.039</td>
<td>0.043</td>
<td>0.046</td>
</tr>
<tr>
<td>2</td>
<td>The perpendicularity of the center line of datum feature C (borehole) to data plane A</td>
<td>0.030</td>
<td>0.079</td>
<td>0.108</td>
</tr>
<tr>
<td>3</td>
<td>Straightness of side B</td>
<td>0.028</td>
<td>0.072</td>
<td>0.057</td>
</tr>
<tr>
<td>4</td>
<td>Straightness of side F</td>
<td>0.010</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>5</td>
<td>Straightness of side G</td>
<td>0.019</td>
<td>0.029</td>
<td>0.101</td>
</tr>
<tr>
<td>6</td>
<td>Straightness of side H</td>
<td>0.006</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>7</td>
<td>Right angle of side H to datum plane B</td>
<td>0.469</td>
<td>0.092</td>
<td>0.137</td>
</tr>
<tr>
<td>8</td>
<td>Squareness of side F with respect to datum plane B</td>
<td>0.437</td>
<td>0.112</td>
<td>0.132</td>
</tr>
<tr>
<td>9</td>
<td>Parallelism of side G with datum plane B</td>
<td>0.121</td>
<td>0.148</td>
<td>0.169</td>
</tr>
<tr>
<td>10</td>
<td>Straightness of side K</td>
<td>0.067</td>
<td>0.076</td>
<td>0.070</td>
</tr>
<tr>
<td>11</td>
<td>Straightness of side L</td>
<td>0.053</td>
<td>0.047</td>
<td>0.049</td>
</tr>
<tr>
<td>12</td>
<td>Straightness of side M</td>
<td>0.077</td>
<td>0.088</td>
<td>0.079</td>
</tr>
<tr>
<td>13</td>
<td>Straightness of side N</td>
<td>0.039</td>
<td>0.053</td>
<td>0.034</td>
</tr>
<tr>
<td>14</td>
<td>30° slope of side K with respect to datum plane B</td>
<td>0.069</td>
<td>0.084</td>
<td>0.124</td>
</tr>
<tr>
<td>15</td>
<td>60° slope of side L with respect to datum plane B</td>
<td>0.266</td>
<td>0.066</td>
<td>0.110</td>
</tr>
<tr>
<td>16</td>
<td>30° slope of side M with respect to datum plane B</td>
<td>0.082</td>
<td>0.094</td>
<td>0.134</td>
</tr>
<tr>
<td>17</td>
<td>60° slope of side N with respect to datum plane B</td>
<td>0.276</td>
<td>0.118</td>
<td>0.092</td>
</tr>
<tr>
<td>18</td>
<td>Roundness of contoured circle P</td>
<td>0.275</td>
<td>0.122</td>
<td>0.086</td>
</tr>
<tr>
<td>19</td>
<td>Concentricity between datum feature C (borehole) and outer circle P</td>
<td>0.274</td>
<td>0.422</td>
<td>0.227</td>
</tr>
<tr>
<td>20</td>
<td>Straightness of side J</td>
<td>0.072</td>
<td>0.086</td>
<td>0.065</td>
</tr>
<tr>
<td>21</td>
<td>Straightness of side J</td>
<td>0.010</td>
<td>0.012</td>
<td>0.018</td>
</tr>
<tr>
<td>22</td>
<td>3° slope of side J with respect to datum plane B</td>
<td>0.120</td>
<td>0.079</td>
<td>0.147</td>
</tr>
<tr>
<td>23</td>
<td>93° slope of side J with respect to datum plane B</td>
<td>0.423</td>
<td>0.095</td>
<td>0.117</td>
</tr>
<tr>
<td>24</td>
<td>Position of hole D1 with respect to datum axis straight line C</td>
<td>0.321</td>
<td>0.052</td>
<td>0.112</td>
</tr>
<tr>
<td>25</td>
<td>Position of hole D2 with respect to datum axis straight line C</td>
<td>0.374</td>
<td>0.084</td>
<td>0.243</td>
</tr>
<tr>
<td>26</td>
<td>Position of hole D3 with respect to datum axis straight line C</td>
<td>0.225</td>
<td>0.104</td>
<td>0.338</td>
</tr>
<tr>
<td>27</td>
<td>Position of hole D4 with respect to datum axis straight line C</td>
<td>0.357</td>
<td>0.085</td>
<td>0.258</td>
</tr>
<tr>
<td>28</td>
<td>Concentricity between outer hole D1 and inner hole E1</td>
<td>0.061</td>
<td>0.055</td>
<td>0.130</td>
</tr>
<tr>
<td>29</td>
<td>Concentricity between outer hole D1 and inner hole E2</td>
<td>0.066</td>
<td>0.097</td>
<td>0.045</td>
</tr>
<tr>
<td>30</td>
<td>Concentricity between outer hole D1 and inner hole E3</td>
<td>0.082</td>
<td>0.121</td>
<td>0.064</td>
</tr>
<tr>
<td>31</td>
<td>Concentricity between outer hole D1 and inner hole E4</td>
<td>0.055</td>
<td>0.052</td>
<td>0.087</td>
</tr>
</tbody>
</table>

To 1/5 that of the end mill in accordance with the ISO standard. The radial depth of cut for finish cutting was determined in accordance with ISO recommended conditions for end mills, and the feed of the boring bite was set to half that of end mills. In addition, all machining directions were reduced.

A coordinate measuring machine (CRYSTA-APEX-9109, manufactured by Mitutoyo) was used to measure the geometrical tolerance. The results are presented in Table 5 and Fig. 7. In the table and figure, the initial setting denotes the machined result using the factory default parameters, while the first calibration denotes the machined result using the parameters from the first calculation, and the second calibration shows the machined result using the parameters from the second calculation. These two calibration calculations were independent of each other and not recalculated using the previous results. Hence, the processing result could not be improved, and the results obtained were independent; therefore, the results might deteriorate at the second time.

As shown in Fig. 7, the machining accuracy of the workpiece was improved by calibrating, particularly its squareness, inclination, and roundness. Furthermore, it can be concluded that the proposed method is sufficiently effective and appropriate to compensate for the machining performance. This implies that the calibration resulted in an improvement in the motion of the RTMT. However, the positioning accuracy was not as high as expected because some of the positions were worse than the initial position values.

The hole center coordinates were measured and compared with the initial and calibrated settings, as shown in Figs. 8–11. When the initial value of the factory default settings was used, the coordinates deviated significantly from the target value occasionally. By contrast, the result of the first calibration was similar to the target value, as
shown by the measurement results of the distance between the holes in Table 6. However, in the second calibration, the positions of the holes in D2, E2, D3, and E3 did not improve as expected.

Figure 12 shows the results for the machined test pieces. By setting the machining conditions moderately in advance, the machined workpiece did not exhibit chatter vibrations on the machined surface. As mentioned previously, this RTMT is more suitable for drilling and boring than contour machining.

The results confirmed that the machining results based on the proposed kinematics parameter calibration are sufficiently effective in improving the machining accuracy because the motion accuracy improved. Although the im-
Table 6. Hole pitches of D1–D4.

<table>
<thead>
<tr>
<th></th>
<th>Initial setting</th>
<th>1st calibration</th>
<th>2nd calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance</td>
<td>Error</td>
<td>Distance</td>
</tr>
<tr>
<td>D1–D2</td>
<td>103.937</td>
<td>−0.063</td>
<td>104.008</td>
</tr>
<tr>
<td>D2–D3</td>
<td>103.872</td>
<td>−0.128</td>
<td>104.085</td>
</tr>
<tr>
<td>D3–D4</td>
<td>103.941</td>
<td>−0.059</td>
<td>104.018</td>
</tr>
<tr>
<td>D4–D1</td>
<td>103.811</td>
<td>−0.189</td>
<td>104.042</td>
</tr>
</tbody>
</table>

Fig. 12. Machined results.

<table>
<thead>
<tr>
<th></th>
<th>Initial setting</th>
<th>1st calibration</th>
<th>2nd calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance</td>
<td>Error</td>
<td>Distance</td>
</tr>
<tr>
<td>E1–E2</td>
<td>103.946</td>
<td>−0.054</td>
<td>104.200</td>
</tr>
<tr>
<td>E2–E3</td>
<td>103.800</td>
<td>0.200</td>
<td>103.979</td>
</tr>
<tr>
<td>E3–E4</td>
<td>103.937</td>
<td>−0.063</td>
<td>104.010</td>
</tr>
<tr>
<td>E4–E1</td>
<td>103.867</td>
<td>−0.133</td>
<td>103.999</td>
</tr>
</tbody>
</table>

5. Conclusions

Machining performance in terms of contouring accuracy and positioning accuracy was described based on a calibration method using an AACMM for an Exechon RTMT. The aluminum alloy was machined according to ISO 10791-7:2020. Furthermore, its validity and effectiveness were confirmed through an evaluation based on actual machining. This method demonstrated that the machining accuracy in the X-Y plane (with the Z-axis constant) of the workspace coordinates was sufficiently effective. Nonetheless, the measurement uncertainty based on some methods remains to be evaluated. The spatial accuracy for all movable ranges should be evaluated in the future. Based on these results, further studies are necessary to investigate the machining of 3D surfaces and the contouring ability of the RTMT.

Acknowledgements

We acknowledge the support provided in terms of equipment provision and equipment operation from Exechon Enterprises LLC, Giken Co., Ltd., and BBS Kinmei Co., Ltd.

References:

Machining Performance of Robot-Type Machine Tool Consisted of Parallel and Serial Links
Based on Calibration of Kinematics Parameters

Name: Keisuke Nagao
Affiliation: Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
2019 - Graduate School of Engineering, Kanazawa Institute of Technology

Main Works:

Membership in Academic Societies:
• Japan Society for Precision Engineering (JSPE)

Name: Nobuaki Fujiki
Affiliation: Associate Professor, Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
1992 - Nachi-Fujikoshi Corp.
1999 - Assistant, Kanazawa Institute of Technology
2008 - Associate Professor, Kanazawa Institute of Technology

Main Works:

Membership in Academic Societies:
• Japan Society of Mechanical Engineers (JSME)
• Robotics Society of Japan (RSJ)

Name: Hiroto Tanaka
Affiliation: Graduate Student, Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
2020 - Received Bachelor of Science in Engineering from Kanazawa Institute of Technology

Membership in Academic Societies:
• Japan Society for Precision Engineering (JSPE)
Name: Akio Hayashi
Affiliation: Associate Professor, Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
- 2014: Received Ph.D. in Engineering from Graduate School of Engineering, Kobe University
- 2014: Assistant Professor, Kanagawa University
- 2017: Assistant Professor, Kanazawa Institute of Technology
- 2021: Associate Professor, Kanazawa Institute of Technology

Main Works:

Membership in Academic Societies:
- Japan Society of Mechanical Engineers (JSME)
- Japan Society for Precision Engineering (JSPE)

Name: Hidetaka Yamaoka
Affiliation: Associate Professor, Mathematics and Science Academic Foundations Programs, Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
- 2005: Received Ph.D. from Department of Applied Mathematics and Physics, Graduate School Informatics, Kyoto University
- 2006: Research Scientist, VCAD System Research Program, The Institute of Physical and Chemical Research (RIKEN)
- 2012: Lecturer, Kanazawa Institute of Technology
- 2017: Associate Professor, Kanazawa Institute of Technology

Main Works:

Membership in Academic Societies:
- American Society of Mechanical Engineers (ASME)
- Japan Society of Mechanical Engineers (JSME), Fellow
- Japan Society for Precision Engineering (JSPE)

Name: Yoshitaka Morimoto
Affiliation: Professor, Kanazawa Institute of Technology

Address: 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

Brief Biographical History:
- 1983: Research Worker, Industrial Research Institute of Ishikawa
- 1996: Associate Professor, Toyama National College of Technology
- 1999: Associate Professor, Utsunomiya University
- 2008: Professor, Kanazawa Institute of Technology
- 2013: Advanced Materials Science Research and Development Center, Kanazawa Institute of Technology
- 2016: Dean of Academic Affairs, Kanazawa Institute of Technology

Main Works:

Membership in Academic Societies:
- American Society of Mechanical Engineers (ASME)
- Japan Society of Mechanical Engineers (JSME)
- Japan Society for Precision Engineering (JSPE)