International Journal of Fluid Machinery and Systems
Online ISSN : 1882-9554
ISSN-L : 1882-9554
Review Papers
Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency
Yanbin LiuWeilin ZhugeXinqian ZhengYangjun ZhangShuyong ZhangJunyue Zhang
Author information
JOURNAL FREE ACCESS

2013 Volume 6 Issue 3 Pages 160-169

Details
Abstract

Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two- stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR
Previous article Next article
feedback
Top