は、心表面上の2ヶ所に植え込んだ双極針電極から得られる興奮電位波を增幅し、微分回路を
通し、コンパレータによりデジタル信号に変換する。判別部は8ビットのワンチップマイクロ
コンピュータを使用しており、測定部からくる信号をもとに各判別を行う。判別部には、興奮
伝達時間差をディジタル表示し、実験応用に便利なように判別結果を出力として不整脈の認
識と作動装置へ作動指示をランプ表示している。

本装置は不整脈発生とほぼ同時に、不整脈認識ランプがつが、誤作動防止のため連続10心
拍続けた時に作動ランプがつくように設定されている。したがって心室頻拍では心拍数200/分
であれば、3秒にて作動ランプがつき、心室細
動では1秒以内に作動ランプがつくことになる。

3. 総括
植え込み式除細動の開発および臨床応用は、Mirowskiらによってすでに行われているが、
Mirowskiらの不整脈認識法は、心表面での単
極電位波形の周波数分析を行い、ヒストグラフ
法を用いてゼロの基準線の消失を心室細動と認
識する方法をとっている。この方法は、単に基
準線の消失をみるため心室頻拍の場合、心拍数
200/分を超えないと認識できない欠点もある。
われわれの認識法は、心室頻拍、心室細動を
区別して認識できることから、今後、心室頻拍
には心室頻拍刺激、心室細動には除細動を行う
判別能力をもった植え込み式治療器が可能とな
る。

4. 結論
心表面2ヶ所の興奮伝達時間差を測定するこ
とにより、心室頻拍、心室細動を別々に認識す
ることが可能である。今回、この考えを基に、
認識回路を試作した。

文献
1) 河村剛史、柴田仁太郎、横山正義、和田守郎：
心室ペーシング時の心表面マッピング心電図.
2：339，1982。
2) Mirowski, M., Mower, M. M., Langer, A. and
Heilman, M. S. : Miniaturized implantable
automatic defibrillator for prevention of sud-
den from ventricular fibrillation. In Cardiac
Pacing, ed by watanabe, Y. Excerpta Medica,
Amsterdam, 1977, 103。

34. 臨床用補助心臓システムの開発とその評価

藤 正 崇* 渋 美 和 彦*
井 街 宏* 宮 本 晃*

開発が進んでいない点にあると考えられる。本
論文は商品化も十分に可能な補助心臓システム
の試作を最初から目指して行った開発の結果と
その評価について述べる。

2. システム構成
試作された補助心臓システムは、血液ポンプ
およびカニューレ、駆動制御装置、計測装置お
よびバックアップシステムからなっている。
血液ポンプは当面サック型で入出口にはオリ
フィス径18 mmのB-S弁が挿入されている。}

* 東京大学医学電子研究施設

～83～
表1 補助心臓装置の基準

1）装置に必要な特性
 小型、移動可能、無騒音
 性能範囲の明示
 耐久限界の明示
 デュアル・バックアップ・システム
 フェイル・セイフ・システム

2）血液ポンプに必要な特性
 耐久限界の明示
 压・流量・供給パワー特性の明示
 抗凝固剤使用条件の明示
 カニューラの特性の明示
 スペア・ボンプの用意
 閉胸・感染防止方法の明示

3）システムとして必要な性能
 病院システムとの整合性
 バックアップの方法の明示
 完全滅菌の実施
 手術室・ICU・一般病室でのシステムの明示

ルで継ぎ目なく作られ、血液接触面はすべてカルディオサランで被覆されている（図1）。

駆動制御装置は空気圧駆動型で、その機能面はもちろんのこと安全性・信頼性および人間工学的な面も十分に検討された。補助心臓装置の臨床適用に至る基準は表1に示すことくであるが、本装置・システムにおいてはそれらの条件を満足している。装置は幅77cm、奥行47cm、高さ100cmとコンパクトに設計され、陽圧コンプレッサと陰圧ポンプが内蔵されている。外
モード、および外部トリガによる同期動作が
でき、左右の騒動に強化、収縮期間、心拍数を
リモートスイッチにより、手術断ででも医師
が直接コントロールできる（図2）。

システムは利用する装置の他にバックアップ
用の予備装置を1台用意し、さらに故障などの
緊急処置やモニタのためにサービスタステーション
として移動装置用単車が用意され、マイコン
や計測器が搭載されている（図3）。

さらに補助心臓の適用が長期にわたったとき
のため、車椅子型転動制御装置が開発中であ
り、評価実験中である（図4）。

3. 評価と臨床応用
基本システムが実用化された昭和57年9月以
2例の臨床例が実施され、2例とも補助心臓か
らの離脱が可能であった。

さらに昭和58年4月に開催された日本知識
総会（大阪）に完全人工心臓実験の羊を輸
送し、12時間を越える長距離輸送にも本システム
が耐え得ることが立証された。

35. ヤギの体外循環におけるホローファイバ
人工肺の使用経験

満戸直人* 藤正雄* 井戸宏* 宮本晃* 中島正治* 本村喜代* 河野明正* 湯美和彦*

1. 緒 言
肺型人工肺は、理論的に生理的に近いガス交
換が行われ、血液損傷も少なく長期にわたる体
外循環に好適といわれ、コイル型ではコロコ型
肺、積層型ではTMO肺などが既に多数臨床
使用されている。これに対し中空膜を用いた、
ホローファイバ型人工肺は構築、流路抵抗を
低くでき、ガス交換能も良好で、血液損傷に関
しても改善が得られたといわれ、臨床使用例も
報告されている1)。

当施設ではヤギを用いて人工心臓置換実験を
行っているが、今回テルモ社製、多孔質ポリプ
ロビレンホローファイバ人工肺（キャピオックス
II）を、人工心臓置換手術の際の体外循環に
使用し、その結果若干の知見を得たので報告する。

2. 対象と方法
キャピオックスIIの完全置換型人工心臓の置
換手術時の体外循環時に用いる、人工肺にキャ
ピオックスIIを用いる以外は、従来当施設で実
施してきた人工心臓置換術と同一条件とする2)。
すなわち実験動物にはヤギを用いること
とし、体外循環回路はトラペノール社製のもの
を流用する。無血充填、稀釈体外循環下に人工
心臓置換手術を行い、術中、術後の血液ガス分
析、血液生化学検査により、キャピオックスII
のガス交換能、血液損傷の程度を検討し、体外
循環後、キャピオックスIIを分解し、内膜面を
走査型電子顕微鏡で観察し抗血栓性などを検討
することとした。

3. 結 果
49から67kg（平均58.6±7.8kg）のメス成
ヤギ6頭を用い、体外循環下に人工心臓置換手
術を行った。用いた人工肺は膜表面積5.4m2の
熱交換器内蔵型のもので、血液回路はトラペノ
ール社製FKM7750を用いた。充填液は乳酸
リングル液を主剤とする透圧、電解質バランス
を調整したものを用いた。ヘパリン量は
300IU/kgを体外循環開始前に静脈内投与し、
回路充填液内に1～3IU/mLを加えた。

右心より上下大静脈にカニューレーションを
施行し脱血し、一側動脈より送血した。