総 説

特集：最近話題の疼痛治療領域関連機器

末梢刺激鎮痛療法機器

稲森 耕平*

1. はじめに

ヒトは痛み部位を、こすったり、叩いたり、あるいは温熱や冷却を加えることが、痛みに対して有効であることを昔から知っていた。このような物理療法中国において体系化され、鍼灸療法として東洋諸国において普及していたのであるが、残念ながら近代医学に立脚した理論がなかったため、ごく最近まで医療の一環に組み入れられていなかった。そもそも、痛みは神経の興奮だから、それを鎮めるためには神経を抑制する薬物を使ったり、痛みの伝導路を手術的に切断しなければならないという常識がこのまで医学のなかで支配的であった。歴史的にもっとも初期の電気作用の記載は痛風や頭痛の治療にシビレイを使用していたシーズンの時代にさかのぼる。その後、時代の変遷を経て、20世紀半ばになり Shealy ら1は脊髄後索を電気刺激する dorsal column stimulation が強力な鎮痛効果を得ることを報告した。これは脊髄後索に電極を埋め込むのに、手術をする前に、その鎮痛効果を確かめる目的で脊髄の電気的神経刺激法 (transcutaneous electrical nerve stimulation: TENS) が行われた。ところが、その後 TENS は自体十分な鎮痛効果を発揮することが認められ、広く普及するにいたったのである。

2. 機 序

皮膚の摩擦刺激で痛みが和らぐという本能的行為をヒトはよく経験する。この摩擦刺激で低閾値 Aβ 線維が興奮しているためである。しかし、継続的な圧迫は鎮痛効果がないのに、Aβ 線維を刺激しての鎮痛は、一過性の運動刺激を与えて生じた神経興奮による特別なカテゴリーに属するものであるといえる。そして、この Aβ 線維刺激を治療的に応用したのが経皮的電気的神経刺激法 (TENS) である2。また、振動刺激で、鎮痛が得られることもわかっている3。これはおそらく、筋肉中の運動感覚神経末梢が適活化しているであろう。1965年、Melzack and Wall のゲートコントロール説 (gate control-theory) 図1は、痛みの治療に新しい領域を開いたものとして高く評価されている。

図1 ゲートコントロール説

ゲートコントロール説の臨床的意義を説明するならば、“知覚刺激が痛みを鎮める”ということである。すなわち、痛みを伝える細い神経線維 Aβ と C からの入力は、脊髄後索の第5層にある Transmission cell (T cell) を興奮させ、ここから脳幹基底核を通って痛みが脳へと伝え、ところが Aβ 線維や C 線維が T cell とシナプスするのに、第IV層、第III層の膠様質 (substantia gelatinosa, SG) 細胞からの

* 大阪医科大学 麻酔科
抑制がかかった場合、T cell は興奮しないで痛みが遮断される。すなわち SG 細胞は門番の役目を果たす。今、知覚を司る太い Aβ 綱維からの興奮が脊髄に伝わってくると、この入力は SG 細胞を刺激するので、門番機関が促進され、細い Aδ 綱維や C 綱維の入力を抑制してしまうという説である。TENS の効果の理論づけはこの説によっている。

この理論を実証するには、太いあるいは細い神経線維の終末が脊髄のなかで、どこに、どのように接続しているかということが、メカニズムを知る上で重要になってくる。最近、解剖学的および生理学的研究の進歩によって、これらの問題は解明されてきている。すなわち、皮膚から脊髄に入るすべての神経線維は後根に入り、脊髄と脳の接続部における薄束核、および楔状核に終わっている。しかしながら、脊髄に入るとこれらの線維は、脊髄灰質を貫く分岐を出している。これらの枝のあるものは、抑制物質 γ-アミノ酪酸（γ-aminobutyric acid: GABA）を遊離する介在ノイオンを経て細い pain fibers の末梢と後角の表層部分において接続している。このような解剖学的配置は、Duggan や Foong が脊髄後索刺激によって観察したの、GABA 由来性の疼痛抑制効果を説明するのに便利である。これらのシステムが TENS の高頻度刺激による疼痛抑制系に関連しているのである。

この回路の存在は分節レベルにおいて、TENS や振動が鎮痛効果を現すことを示している。また、この回路は、エンケファリンやその他の内因性モルヒネ様物質を遊離する神経終末に関連ないで、分節的 TENS による鎮痛はナロキソールで拮抗される。分節レベルでは高頻度・低強度の鎮痛刺激（TENS）および、低頻度・高強度の鎮痛刺激（電）の両方とも、Melzak および Wall のゲートコントロール説でよく説明できる。

TENS 刺激による情報伝達する Aβ 綱維は脊髄の後索を上行して、薄束核および楔状核で終止する。これらの神経線維は交差し、かつ脊髄を上行して視床に達し、さらに大脳皮質へと情報が伝えられ、そして意識化される。しかし、内側縦帯は途中でたくさんの側脳を出しているが、主なものは中脳への分岐である。その他、視覚前脳核（anterior pretectal nucleus）のものもある。この核は中脳水道周囲灰白質（periaqueductal gray matter）に突起を出し、下行性抑制系を賦活化する。また、Aβ 綱維刺激による情報は脊髄の反対側に伝わり、前側索を上行する。脳幹内側の網様体は上行線維の大部分を受けるが、これらの線維は脊髄の灰質から端を発している。この灰白質は C 綱維によって、膠様質を介して賦活化されるといわれている。1969 年 Reynolds は中脳水道周囲灰白質（PAG）を電気刺激している間、ラットに無痛手術を行うことを示した。Meyer および Liebeskind は、PAG の尾腹側部から脊髄へ向かう下行性抑制系は、痛みのメッセージを運ぶ上行ニューロンを抑制する作用があることを示した。PAG から下行する経路は、延髄の大縦線核に中継する、もとのセロトニンを伝導物質とする線維が、大縦線核から後側索を下行して、それが後角のエンケファリン含有介在ノイオンである柄細胞に直接接続している。

3. 末梢刺激鎮痛療法機器

1）TENS

最近の機器は、軽量化、耐久性、装着感の良さなど優れた特色をもち、操作が簡単である。刺激モード、連続刺激、パーストモード（たとえば毎秒 2 回のパースト）、パルス幅変調モード（パルス幅が設定値の 3.5 秒からその 60% まで漸次低下し、そこで低下すると、設定値へと増加をはじめるという形で起こる）の 3 種類がある。

Respond Select（日本メディックス）は出力波形に非対称波と対称波の 2 種類があり、小さい筋群には非対称波を用い、より大きい筋群には最大刺激を与える双方向性対称波を選択できる。大型 LCD パネルにてすべての設定パラメータを表示している。また、治療時間を積算し、記憶、必要に応じて表示することができる。さらに、電流計管理機能を増設している。単純な 2 チャンネル同時、交互刺激ではなく、チャンネル 1 の出力後、時間設定により遅れてチャ
ンネル1とチャンネル2を独立したサイクル時間に設定することができ、これは、身体の自然な筋活動の中で行われる、拮抗する筋群の連携運動を可能にするといわれている。

TENSの電極を装着する部位は、モーターポイント、トリガーポイント、経穴の3点を選択するといよい、これらの点で皮膚の電気抵抗は少なく、電気的刺激を与える場所として適している。モーターポイントは筋肉に神経や血管が進入する狭い領域であることである。したがって、圧痛点を指しでもいる。ここは低周波TENSに適した電極の位置である。トリガーポイントは筋肉ばかりでなく、腱、靭帯、関節包に分布している。経穴は東洋医学のツボを選択すればよい。

TENSの刺激方法は、痛みのある部分あるいは中枢側に電極を固定し、患者がもっとも快く感じるようにパルス幅、刺激周波数、振幅を調節する。1回の刺激時間は20〜30秒で刺激回数は1日1回を基本とする。それ以上1日何回まで問題はない。パルス波形数は3Hzの低周波と100Hzの高周波の2種類を選択できる。パルス幅も50μsと200μsの2種類を選択でき、2つの独立したチャンネルになっていることが多い。それぞれ2カ所同時に刺激を与えることができる。その他、連続か間欠通電もある。

痛みの状況に応じ、これらのパラメーターを自分で調整する。電極は粘着性がよく、ゲルが不要で、また再利用可能であるものが多い。ポケットに入る手軽なTENS装着が多種類でまわっており、欧米で普及はよく高い。TENSの効果であるがいろいろな慢性疼痛に対し、米国の5施設3,000例についてまとめた結果は、有効率約60%であった。施設は違ってもその成績は驚くほど似ていたという報告がある。

腹部外科学術後疼痛に対する高強度（9〜12mΑ）の刺激は低強度（4〜5mΑ）の刺激よりも効果的である。術後疼痛にTENSを使う場合、創部の周囲で電極を平行に装着し、刺激強度を徐々に強めてゆき、ここらよい程度にする。術後から24〜48時間、持続的に使うのが効果的である。TENSは長時間使用することにより、鎮痛薬を必要としない症例もある。

術後、肺活量、下肢屈曲度はTENS使用により有意に増大したとの報告がある。臨床的な面からみると、疼痛側と反対側を刺激して、鎮痛効果が得られることを経験することがある。これはセロトニン、ノルアドレナリンをneuro-transmitterとしていわゆる内因性下行性疼痛制御機構の賦活の関与があるという。組織代謝賦活、直接血管拡張作用による血行改善の関与、さらに血流増加効果としての鎮痛効果の関与などが考えられる。

2）SSP療法器

SSP療法器のトリミックス〈リノス〉（日本メディックス）は、多チャンネル装置を持つ治療器にとってわずらわしかった出力調整を最新のテクノロジーにより操作を半自動化し、どれか1つのチャンネルの出力ボリュームを上げると、その動きに連動して他のチャンネルのボリューム
マも自動的に上がるようになっている。たとえ
SIP電極を装着していないチャンネルがあった
としても、自動的に検知してポリュームをOFF
まで戻すので、操作が簡単である。

また、痛みの治療器としては、世界で初めて大
型カラービューフィードを採用して、電流、電圧、脈拍
などを治療に必要な情報や電極などに画面に表示
できるのが特徴である。また、トレンディクス「リ
ノス」は「1/fゆらぎ」によって心地よいリラクゼーション効果を与え、一層の治療効果が得
られる。自然料にはさまざまな音があり、これ
を分析すると3種類のゆらぎに分けられる。第
1はまったたくランダムなパターンで、音楽に例
えばピアノをでたらめに叩いているような音
(1/f^2)、第2は極めて厳密に一定の変化様式に
従うパターンで、例えば一定の間隔でピアノを
叩くような音(1/fゆらぎ)、そして第3はラン
ダムでも単調でもない特別な性質をもってゆ
らぐパターンで、これを「1/fゆらぎ」という。
この「1/fゆらぎ」は自然界に多く存在し、例
えば小川のせせらぎ、小鳥のさえずり、さわや
かなそよ風といった心安らぐリズムである。同
様に心地よい音楽を聞いたり、夜深い夜を抱い
たり、安らかにしているときの脳波にも「1/fゆ
らぎ」が存在する。この「1/fゆらぎ」リズム
を末梢電気刺激の治療に取り入れたとき効果的で
あるということから、「1/fゆらぎ」が生体と深
い関わりを持っていることがわかった。さらに、
高頻度周波数と低頻度周波数を各チャンネルご
とに出力することで、即時鎮痛効果と鎮痛持続
効果を同時にえることもできる、いわゆるデュ
アル通電機能を備えている。

3) 高周波治療器

高周波治療器 シリカ (関西放射線機器)
高周波治療器は高周波を適切に調整すると非常に
ソフトで気持ちの良い治療ができるといわれ
ている。高周波電流は体内深部透過性にすくめ
深部を活性化させ早期の症状緩和が得られる。
① 急性の痛み、腫れ等に著しい効果がある。
② 筋肉痛・関節痛などの慢性の症状にも深部
刺激による効果を発揮する。
③ 治療後、長時間治療効果が持続する。
④ 筋の収縮作用に優れているので、筋痙攣時

図4 干渉電流型低周波治療器
SD-5102 セダステ〈ミリア〉

(38) 医学雑 Vol. 71, No. 3 (2001)
果を筋再教育の1でその是意識波を通電するが、電気刺激周波数の周波数に依存する周波数干渉波周波数に及ぼす。その差を及ぼす波1,000Hzと1,005Hzで干渉させた場合、干渉波周波数は5Hzとなる。干渉波周波数は低周波帯域であるが、干渉波を作り出す周波数は中周波帯域であり、2.5～5KHzが多い。

干渉波周波通電は、患部周囲に電極を設置することにより、従来の低周波のように通電する不快感を伴わない、トリガーポイントなどを意識しないなど比較的簡便に高い鎮痛効果を得られる治療法である。しかし、治療部位の通電対象となる組織の空間的配置や性状などによっては、電極の設置位置や通電方法を検討してから通電する必要がある。干渉波低周波の適応は、① 疼痛の緩解、② 筋スパズム、筋性的抑制、③ 筋再教育、④ 閉塞性の軽減、⑤ ストレス性失禁などである。干渉波治療器は整形外科やその他の痛みの治療になくてはならないもので、これにより腰痛、坐骨神経痛、関節痛などの疼痛管理に効果的な機器である。セレナーミリアのプログラムモードは、高頻度周波数帯と低周波波帯数の治療時間を1:2の比率とすることで、即時、鎮痛効果と鎮痛接続効果を同時に得られるようになっている。さらに、「L/fゆらぎ」モードになっていると、各々の周波数帯が「L/fゆらぎ」に従って変動する。基本周波数は通常は皮膚抵抗が少なく刺激量の大きい5,000Hzのソフトモードで、刺激に慣れた場合は刺激感の強い2,500Hzの2種類を用いる。

文献

医器学 Vol. 71, No. 3 (2001) (39)
16）平野幸伸：理学療法 Mook 3 疼痛の理学療法
鈴木重行・黑川幸雄編：192-201，1999。
17）田中尚喜，他：干渉低周波電流の刺激電極数による鎮痛効果の比較について。物理療法研究会
会雑誌. 7: 49-52，2000。
18）片田重彦，石黒 隆：整形外科プライマリケア
ハンドブック，南江堂，東京，P9-20，2000。