53. 連続測定型耳式体温計の臨床中応用への取り組み（第一報）

加藤伸彦*1、佐藤直樹*2、守田洋介*2、小鳥 琢*2、田中秀樹*3、馬杉則彦*4

*1 北海道大学病院診療支援部 ME 機器管理センター、*2同行 手術部、*3 株式会社ケイオス、
*4 湯河原厚生年金病院

1. はじめに
現在、手術中の体温管理の指標として、食道、膀胱、直腸温が主に用いられ、その選択は術式等により使い分けられている。しかしこれらの体温測定にはセンサ留置という患者にとっては侵襲を伴い、この負担を軽減することが望まれていた。赤外線耳式体温計は鼓膜から放射される赤外線の強度を赤外線センサで測定し、それをもとに鼓膜温を算出するものであり、短時間で簡便に鼓膜の温度を測定できることから近年注目されているが、連続測定が可能な赤外線耳式体温計はこれまで開発されていなかった。

2. 目的
新たに考案された連続測定型耳式体温プローブの有用性について、全身麻酔下手術においての検討を行った。本実験は、本格的な臨床試験に入る段階であり、本結果から、測定機器の改良や臨床試験におけるプロトコル作成を行うことを目的とした。

3. 装置の概要
装置は、プローブ部、コントローラー部、バイタルモニタから構成されており（図１）。プローブ部で赤外線を受光し、コントローラー部で温度に換算した後バイタルモニタへと出力している。本実験においてはバイタルモニタの代わりに PC へと接続し、測定データを記録するようにした。なお、プローブは、患者ごとの交換が可能となっており、耳式体温計は耳から放射されている赤外線をセンサで受光し、その赤外線量から温度に換算して体温とするものである。ここで得られた体温は、鼓膜およびその周辺組織からの赤外線量を測定しているため、この測定部位全体の平均温度となっている。したがって本装置を測定される体温は、鼓膜温と同じであるとは言えないので、本報では耳温とした。

(図1)

4. 対象
手術時間が 3 〜 4 時間の中等度で、手術が体温変化に及ぼす影響が少ないと思われる症例を条件として、産科腹腔鏡手術 30 例とした。

5. 測定方法
本装置においてセンサを介して得られたデータを PC により 5 分毎に記録し同時刻の食道温 20 例、膀胱温 10 例を比較対象とした。食道温、膀胱温のデータは、北大病院自動麻酔記録システムサーバー内より取り出し記録した。評価内容としては、食道温、膀胱温との相関性に加え本装置の全般的な使用感とした。
6. 結果
温度測定プローブはイヤホン型をしており、その装着には特別な手法を要しなかった。
また、プローブ部は交換タイプであり、プローブ本体の滅菌や消毒を必要としておらず取り扱いは容易であった。また患者に対する侵襲は極めて少なくその使用について特に問題となる点はなかった。プローブの形状は耳形状に対しても配慮されており、耳への挿入が簡単に行え、装着時の安定性も同様であった。
測定値に関しては、症例数が30例程度と少ないため統計学的分析まではいたていないが、食道温、膀胱温それぞれの比較データから、臨床応用は十分応用できる範囲であると考えられた。しかし食道温や膀胱温と耳温の関係をみると（図2）、とくに膀胱温との比較で耳温は低くでる傾向である。

（図2）

この傾向を詳しく見るために食道温、膀胱温、耳温との差をプロットした（図3）。

（図3）

膀胱温との比較では0.33℃低い程度に収まっている。このことは、膀胱温は、食道温よりの外郭温の影響を受けやすく、さらにこの膀胱温に耳温がより一致することは耳温も外郭である外耳道の温度影響を受けていると考えられた。これはプローブのセンサ部分が個人差のある鼓膜方向を捕らえていないことが理由として考えられた。
しかし、これまでの耳道内挿入するタイプの温度プローブで測定した温度と比較し、その影響は極力小さくなっていることが考えられた。この点をさらなる改善点としてセンサ、プローブの改良を行い、現在は改良されたプローブで第二段階の実験を継続中である。

7. 考察
測定結果から耳温は、外郭である外耳道の温度影響を受けていると考えられるが、これまでの耳道内挿入タイプで測定した鼓膜温と比較して外耳道の影響が小さいと考えられた。今後さらなる改良が求められるが、本検証において臨床に十分応用できる範囲であると考えられた。

8. まとめ
今回開発した連続測定型耳式体温計の温度プローブはイヤホン型で装着が容易であり、また鼓膜に直接接触しないので患者への侵襲が少ない点ですくれている。操作性については問題なく、測定値においても膀胱温および直腸温と比較し測定値の大きさなときは観察されず、臨床に十分応用できる可能性があると考えられた。今後、第二段階として本検証で得た問題点を改良したプローブを用い、他部位との相関性についてさらに検討していく予定である。