研究ノート

米国、EU、日本における新医薬品の承認状況 —新有効成分含有医薬品334薬剤—
辻 香織1,2) 津谷喜一郎3)

米国、EU、日本において1999年から2005年の間に承認された新有効成分含有医薬品（以下、新医薬品）334薬剤を対象に、各地域での承認割合と承認までのタイムラグ平均月数（年数）を算出した。タイムラグは地域のいずれかにおいて初承認となった年月日を基点とした当該地域での承認年月日までの期間と定義した。

新医薬品334薬剤のうち、各地域における承認割合数は、米国274薬剤（82.6%）、EU262薬剤（78.4%）、日本181薬剤（54.2%）であった。各地域において承認を取得するまでのタイムラグ平均月数（年数）は、米国13.5ヶ月（1.1年）、EU13.2ヶ月（1.1年）、日本46.3ヶ月（3.9年）であった。いずれかの地域においてオープンドラッグ指定を受けている60薬剤（HIV/AIDS治験薬を除く）のうち、各地域における承認薬剤数は、米国52薬剤（86.7%）、EU49薬剤（81.7%）、日本32薬剤（53.3%）であった。それらのタイムラグ平均月数（年数）は、米国10.1ヶ月（0.8年）、EU23.8ヶ月（2.0年）、日本52.6ヶ月（4.4年）であった。

米国とEUにおける新医薬品の承認割合はいずれも約8割、承認までのタイムラグ平均期間はいずれも約1年と、米国とEUとの間に大きな差はみられない。日本においては約半数の新薬剤が未承認であり、米国、EUに比べて、平均して約3年の承認の遅れが生じていた。オープンドラッグに限定すると、米国とEU間のギャップが明らかとなり、全体の分析と比較して日本におけるタイムラグは大きくなった。

キーワード アクセスギャップ、日米EU、医薬品承認、新有効成分含有医薬品、オープンドラッグ

1. はじめに

人類の健康維持にとって優良な医薬品の使用は重要である。ある疾患の治療薬が存在する場合、世界のどの地域においてもその医薬品へのアクセスが可能であることが望まれる。しかし、さまざまな理由により、ある国では利用可能な医薬品が他国では利用できないといった状況が存在する。発展途上国では、主として経済的な理由から必要

1) 東京大学大学院薬学系研究科博士課程
2) 総合医療科学研究所
3) 東京大学大学院薬学系研究科
表1 データソース一覧

<table>
<thead>
<tr>
<th>地域</th>
<th>データソース</th>
</tr>
</thead>
</table>
| 1.米国 | 1-1 米国食品医薬品局（U.S. Food and Drug Administration：FDA）のCenter for Drug Evaluation and Research（CDER）のwebsite “CDER Drug and Biologic Approval Report” (http://www.fda.gov/cder/rdmt/)
1-2 FDA CDERのwebsite “Drugs@FDA” (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/) |
| 3. 日本 | 3-1 「最近の新薬」* 平成11年（1999年）度版～平成17年（2005年）度版 じほう
3-2 医薬品医療機器総合機構（Pharmaceuticals and Medical Devices Agency：PMDA）のwebsite「医薬品医療機器情報提供ホームページ」の「新薬の承認に関する情報」 (http://www.info.pmda.go.jp/shinyaku/shinyaku_index.html)
3-3 同「添付文書情報」 (http://www.info.pmda.go.jp/info/pi_index.html)
3-4 日本製薬工業協会のwebsite「開発中の新薬」 (http://www.okusuri.info/chikeno/shinyaku.htm) |
| 4. その他 | 4-1 IMS Healthの提供するデータベースサービス“IMS R&D Focus”*
4-2 同 “IMS New Product Focus”*
4-3 申請企業のwebsite |

*有料のソース。本論文中の図表はIMS Health製品のデータを一部を利用して作成しているため、無断転載・複写を禁ずる。

説にみるように、主として1980年代に行われた一連の研究から、先進諸国における医薬品へのアクセスにはばらつきがあることがわかった。これら の研究のうち、日本を含む先進2カ国を対象とした研究においては、日本において大きなドラッグラグが存在することが指摘されている（Parker, 1989a, 1989b）。

上記のとおり、日本における医薬品の承認が欧米より遅れがちであることは一部には知られてい たが、それを問題とする議論はあまりなされてこなかった。ところが2000年代に入り、海外で販売されているが日本では承認されていない、いわゆる「国内未承認薬」の問題が取り上げられるよう になり、他国と比較した医薬品へのアクセスの遅れは、「アクセスギャップ」（access gap）、あるいは1970年代の米国にならい「ドラッグラグ」という言葉で語られるようになった。しかし、2005年以降、日本を含めた世界各国の医薬品アクセスに関する研究結果がいくつか報告されたもの（Danzon, Wang and Wang, 2005；福原, 2006）、対象医薬品は限られており、その全体像はまだ把握されていない。

以上の背景より、医薬品へのアクセスギャップの現状把握を目的とし、世界における新有効成分含有医薬品（以下、新薬品）の米国、EU、日本における承認の現状について3地域の比較を行っ た。また、研究の方法論を中心に考察を加えた。

2．方法

調査に用いたデータソースの一覧を表1に示す。調査は2006年10月末時点での情報に基づく。

1）米国、EU、日本における新薬品のリストアップと分析対象新薬品の特定

米国、EUおよび日本において1999年から2005年の間に承認を取得した新薬品を以下的方法でリストアップし、各医薬品について、承認年月日、一般名、商品名、申請企業、適応症、オープンドラッグ指定の有無を調査した。
米国、EU、日本における新医薬品の承認状況

(1) 米国
FDA CDER の “CDER Drug and Biologic Approval Reports”（表1の1-1）をデータソースとし、1999年から2005年の間に new molecular entity (NMEs) あるいは new biologics (New BLAs) として承認を取得した医薬品をリストアップした。

(2) EU
EMEAが公表しているEuropean public assessment report (EPAR, 表1の2-1) の全リストの中から、1999年から2005年の間に新薬品として承認された医薬品をリストアップした。EPARが公表されるのは centralized procedure による承認品目である。したがって、分析対象新薬品リストアップの段階で、centralized procedure によらず EU のいずれかの国において承認を取得した新薬品は対象に含まない。

(3) 日本
「最近の新薬」(じほう) 平成11年 (1999年) 度版～平成17年 (2005年) 度版（表1の3-1）、PMDA の website 「医薬品医療機器情報提供ホームページの公開情報（表1の3-2）」をデータソースとし、1999年から2005年の間に新有効成分含有医薬品として承認を取得した医薬品をリストアップした。

２）3地域のデータベースの統合
各地域で新薬品として承認された医薬品のデータベースを統合し、分析対象新薬品を特定した。有効成分が国際一斉名（International Nonproprietary Names：INN）で同一であるものは同一の新薬品として扱い、3地域において適応症が本質的に異なることを確認した。新薬品を含む配合剤は分析対象に含めた。

分析対象から除外した医薬品は下記のとおりである。

● ワクチン
● いずれかの地域において販売中止となったもの
● 効能追加、用法用量追加、剤型追加など新医薬品でないもの
● 医療器具、消毒薬、試薬など人体に用いないもの
● 新医薬品を含まない配合剤
● 3地域での開発戦略が全く異なるもの（経口剤と点眼剤など）

3）3地域における承認年月日の網羅的調査、未承認薬の発開状況の調査
1）でリストアップされた分析対象新薬品については1999年から2005年の間に承認年月日はすでに得られているが、ある地域で1999年以前あるいは2006年に承認になっている場合には承認年月日は得られていない。未承認である場合もある。そこで、FDA CDER の “Drugs@FDA” （表1の1-2）、PMDA の website 「添付文書情報」 (同3-3)、日本製薬工業会の website 「開発中の新薬」 (同3-4)、IMS Health のデータベースサービス “IMS R&D Focus” （同4-1）と “IMS New Product Focus” （同4-2）、申請企業の website (同4-3) をデータソースとし、各地域における承認の有無と承認年月日を可能な限り調査した。

先述したように、EU については centralized procedure により承認された新薬品のリストアップを行った。一方、米国あるいは日本において承認された新薬品の EU における承認年月日を検索すると、centralized procedure によらず、EU加盟国のいずれかで承認されているものがあった。このような場合、EU 主要国であるイギリス、フランス、ドイツのいずれかにおいて承認を取得している場合には EU での「承認あり」として扱い、承認年月日はこれら3国で最も早い日付を採用した。

245
4）米国，EU，日本における新薬薬品承認状況の分析

分析対象新薬薬品について，3地域の各々における承認薬剤数と承認割合，3地域のうち初承認となった地域の内訳，各地域における承認のタイムラグ平均期間につき分析を行った。

個々の薬剤のタイムラグの算出に際して，各地域で承認されている医薬品について，3地域のいずれかにおいて初承認となった年月日を基点とした当該地域での承認年月日までの期間を算出した。すなわち，各地域における承認薬剤の各々について，3地域における初承認であれば0を与え，2番目あるいは3番目であれば，3地域における初承認の年月日から当該地域での承認年月日までの期間を与えた。算出にあたり，承認年まで特定できたものについては承認年中央の日付（例：1980年まで特定できた場合には1980年6月30日），承認年月まで特定できたものについては承認年中央の日付（例：1995年6月まで特定できた場合には1995年6月15日）を与えて計算した。

また，各地域におけるタイムラグ平均月数（年数）は，下記の「対象A」を基本の対象として算出し，参考として「対象B」，「対象C」についても算出した。当該地域での承認年が不明あるいは初承認地域の承認年が不明なためタイムラグが算出できない薬剤は計算から除外した。

対象A: 各地域におけるすべての承認薬剤。すなわち，i）3地域とも承認されている薬剤，ii）当該地域と他の1地域で承認されている薬剤，iii）当該地域でのみ承認されている薬剤
対象B: 各地域における承認薬剤のうち，i）3地域とも承認されている薬剤，ii）当該地域と他の1地域で承認されている薬剤

5）米国，EU，日本における未承認薬に関する分析

2006年10月末時点で米国，EU，日本の各地域において未承認であった医薬品について，治療領域別内訳を分析した。治療領域の分類はIMS HealthによるAnatomical Therapeutic Chemical（ATC）分類第1水準を用いた。IMSによるATC分類はEphMRA Anatomical Classificationを基本としており，WHO ATC分類とのハーモナイゼーションは試みられているものの，同一ではないことに留意されたい（津谷，五十嵐，森川，2004）。

また，各地域の未承認薬について，開発状況別内訳（申請中，臨床開発段階，非臨床開発段階，開発中止，開発情報なし）を分析した。

3. 結果

1）分析対象新薬薬品

1999年から2005年の間に承認を取得した新薬薬品は，米国において179薬剤，日本において176薬
剤であった。1995年以降、EU の centralized procedure により承認を取得した医薬品は289薬剤あり、このうち1999年から2005年の間に承認を取得した新薬品313薬剤を特定した。3地域のデータベースを統合し、除外対象医薬品を除くと、分析対象新薬品は合計334薬剤となった。

2）分析対象新薬品の米国、EU、日本における承認状況の概略
図1に示すとおり、新薬品334薬剤のうち、

3）米国、EU、日本における新薬品の承認割合と承認までのタイムラグ
米国、EU、日本における新薬品承認状況の比較を表2に示す。

<table>
<thead>
<tr>
<th>薬剤</th>
<th>米国</th>
<th>EU</th>
<th>日本</th>
</tr>
</thead>
<tbody>
<tr>
<td>新薬品全体 (n=334)</td>
<td>新薬品承認数(割合)</td>
<td>274(82.6%)</td>
<td>262(78.4%)</td>
</tr>
<tr>
<td>3地域初の承認数(割合)</td>
<td>171(51.2%)</td>
<td>117(35.0%)</td>
<td>46(13.8%)</td>
</tr>
<tr>
<td>対象Aタイムラグ平均月数(年数)</td>
<td>13.5(1.1)</td>
<td>13.2(1.1)</td>
<td>46.3(3.9)</td>
</tr>
<tr>
<td>対象Bタイムラグ平均月数(年数)</td>
<td>15.1(1.3)</td>
<td>15.8(1.3)</td>
<td>57.8(4.8)</td>
</tr>
<tr>
<td>対象Cタイムラグ平均月数(年数)</td>
<td>16.7(1.4)</td>
<td>15.7(1.4)</td>
<td>57.1(4.8)</td>
</tr>
<tr>
<td>オーファンドラッグ (n=60)</td>
<td>新薬品承認数(割合)</td>
<td>52(86.7%)</td>
<td>49(81.7%)</td>
</tr>
<tr>
<td>3地域初の承認数(割合)</td>
<td>41(68.3%)</td>
<td>15(25.0%)</td>
<td>4(6.7%)</td>
</tr>
<tr>
<td>対象Aタイムラグ平均月数(年数)</td>
<td>10.1(0.8)</td>
<td>23.8(2.0)</td>
<td>52.6(4.4)</td>
</tr>
<tr>
<td>対象Bタイムラグ平均月数(年数)</td>
<td>11.7(1.0)</td>
<td>24.4(2.0)</td>
<td>58.2(4.8)</td>
</tr>
<tr>
<td>対象Cタイムラグ平均月数(年数)</td>
<td>15.0(1.3)</td>
<td>31.0(2.6)</td>
<td>60.7(5.1)</td>
</tr>
<tr>
<td>HIV/AIDS治療薬 (n=11)</td>
<td>新薬品承認数(割合)</td>
<td>11(100%)</td>
<td>11(100%)</td>
</tr>
<tr>
<td>3地域初の承認数(割合)</td>
<td>11(100%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>対象Aタイムラグ平均月数(年数)</td>
<td>0(n=11)</td>
<td>7.5(0.6)</td>
<td>14.8(1.2)</td>
</tr>
<tr>
<td>対象Bタイムラグ平均月数(年数)</td>
<td>0(n=9)</td>
<td>8.4(0.7)</td>
<td>14.8(1.2)</td>
</tr>
</tbody>
</table>

対象A：各地域におけるすべての承認薬剤
対象B：各地域における承認薬剤のうち、3地域とも承認されている薬剤、当該地域と他の1地域で承認されている薬剤
対象C：各地域における承認薬剤のうち、3地域とも承認されている薬剤
注）当該地域での承認年が不明あるいは承認承認薬剤が不明なためタイムラグが算出できない薬剤は計算から除外した。
注）HIV/AIDS治療薬については、ある1地域でのみ承認されている薬剤がないため、対象Bは該当せず
各地域における承認薬剤（対象A）について、承認までのタイムラグ平均月数（年数）を算出した。承認年が不明などの理由によりタイムラグが算出できない薬剤（米国1薬剤，EU5薬剤，日本2薬剤）は計算から除外した。米国273薬剤，EU257薬剤，日本179薬剤を対象として算出すると，表２に示すとおり，タイムラグ平均月数（年数）は，米国13.5ヶ月（1.1年），EU13.2ヶ月（1.1年），日本46.3ヶ月（3.9年）であった。

タイムラグの分布を図3に示す。タイムラグが0のものは，当該地域で初承認になったものである（米国171薬剤，EU117薬剤，日本46薬剤）。米国は最長263ヶ月（22年），EUは最長298ヶ月（25年）のものまで幅広く分布していた。日本はタイムラグ平均値（46.3ヶ月，3.9年）付近を中心に，米国，EUに比べ大きなくらつきを示した。最長は285ヶ月（24年）であった。タイムラグが5年以上の長期に及ぶものは，米国22薬剤，EU17薬剤，日本47薬剤であった。

参考のため，対象B（3地域とも承認されている薬剤，当該地域と他の1地域で承認されている薬剤），対象C（3地域とも承認されている薬剤）についてもタイムラグ平均月数（年数）を算出した。表2に示すように，各地域とも，対象が限定されるのにやタイムラグが長くなる傾向がみられたが，全体としての傾向には変化がなかった。日本は，対象Aのタイムラグ平均月数（年数）が46.3ヶ月（3.9年）であったのに対し，対象Bで57.8ヶ月（4.8年），対象Cで57.1ヶ月（4.8年）と，1年近く長くなった。

4）米国，EU，日本におけるオープンドラッグの承認割合と承認までのタイムラグ

新薬品334薬剤のうち，米国，EU，日本のいずれかの地域においてオープンドラッグ指定を受けている60薬剤（HIV/AIDS治療薬は除く）について，同様の分析を行った。

表2，図4に示すとおり，米国，EU，日本における承認薬剤数，米国52薬剤（86.7 %），EU49薬剤（81.7 %），日本32薬剤（53.3%）であった。3地域のうち初承認となった地域が米国である薬剤数は11薬剤（68.3%）であり，EU15薬剤（25.0%），日本4薬剤（6.7%）であった。

3）と同様に，承認年が不明な4薬剤（米国0
米国、EU、日本における新薬品の承認状況

図3 タイムラグの分布（全334薬剤、縦軸はルート変換スケール）

図4 米国、EU、日本における新薬品の承認割合とタイムラグ平均月数（オーファンドラッグ60薬剤）
EU 4薬剤、日本 1薬剤）を除き、米国 52薬剤、EU 46薬剤、日本 31薬剤を対象（对象A）としてタイムラグ平均月数（年数）を算出した。表2、図4に示すとおり、タイムラグ平均月数（年数）は、米国 10.1ヶ月（0.8年）、EU 23.8ヶ月（2.0年）、日本 52.6ヶ月（4.4年）であった。タイムラグの分布を図5に示す。新薬品全体の分布と同様の傾向がみられた。対象B、Cでは、対象Aに比べタイムラグ平均月数（年数）が長くなったが、全体としての傾向に変化はなかった。

5）米国、EU、日本における HIV/AIDS 治療薬の承認割合と承認までのタイムラグ

HIV/AIDS 治療薬11薬剤についてみると、表2、図6に示すとおり、米国、EUとも承認薬剤数は11薬剤（100％）であり、日本においては9薬剤（81.8％）であった。また、すべての薬剤が米国で承認となっていた。対象Aのタイムラグ平均月数（年数）は、米国 0ヶ月、EU 7.5ヶ月（0.6年）、日本 14.8ヶ月（1.2年）であった。ある1地域でのみ承認されている薬剤はなかったため、対象Bは該当するものはない。対象Cについてはのタイムラグ平均月数（年数）は対象Aとほぼ同程度であった（表2）。

6）米国、EU、日本における未承認薬の内訳

各地域における未承認薬（米国60薬剤、EU 72薬剤、日本153薬剤）の治療領域別（IMSによるATC分類第1水準）内訳を図7に示す。3地域とも、抗がん剤、中枢神経系の薬剤数が比較的に多く認められた。日本において抗菌剤の未承認薬剤数が少ない傾向がみられたほかは、3地域の比較
図6 米国、EU、日本における新薬品の承認割合とタイムラグ平均月数（HIV/AIDS治療薬分薬）

図7 米国、EU、日本における未承認薬の治療領域別（IMSのATC分類）内訳

において特別な差異は認められなかった。各地域における未承認薬の開発状況を図8に示す。各地域において申請中あるいは臨床開発段階にあるものは、米国19/60薬剤（31.7％）、EU28/72薬剤（38.9％）、日本61/153薬剤（39.9％）と3～4割に留まっており、いずれの地域において
も半数以上の未承認薬について開発が行われていないという情報がなかった。オーファンドラッグについてみると、図9に示すところ、米国、EUにおいて半数以上、日本において約22%/28薬剤（78.6%）の未承認薬について開発が行われているという情報がなかった。

4. 考察

本研究は、米国、EU、日本における医薬品へのアクセスの現状把握を目的としたものである。ここでは、本研究の意義、アクセスギャップの現状、調査対象期間やデータソースなどの方法論を中心に議論する。最後に今後の研究の可能性について述べる。

1）先行研究と本研究計画の背景

日本においては、1990年代半ばごろから、承認事項以外の効能・効果あるいは用法用量の医薬品使用である「適応外使用」が問題となり、厚生労働省が関与して適応外使用の実態把握や解決に向けた施策が講じられるようになった。これに続き2000年代に入ると、日本は欧米に比べて医薬品へのアクセスが遅れているという「未承認薬」の問題がさかんに取り上げられるようになった。欧米の標準薬あるいは大きな期待とともに欧米市場に登場した新薬が日本では使用できないという訴えはよく聞かれる。1990年代以降のインターネットの普及に伴い、2000年前後から患者自身が情報収集を行うようになり、日本で未承認の医薬品の使用を主治医に依頼するか、自身で購入するケースも増加しているようである。このような背景から、アクセスギャップ（「ドラッグラッグ」と称されることも多い）の問題は急速に注目されるようになってきた。

医薬品のアクセスギャップに関する定量的調査はこれまで欧米諸国を対象としたものが大半であったが、2005年以降、日本の状況を含む3件の報告が行われた。福原（2006）は、2004年度世界売上上位88薬剤を対象とした分析を行い、28薬剤
（31.8％）が日本では未上市であることを報告した。この数字は米国/アルゼンチン（0薬剤、0％）、イギリス（1薬剤、11％）、ドイツ（2薬剤、2.3％）などの先進他国に比べ圧倒的に高く、調査対象66カ国の中ワースト7位となっている。また、世界初上市から自国での上市までのタイムラグ平均期間は、米国とイギリスが最も小さく14年であるのに対し、日本は3.9年と、2.5年の遅れが生じていた。島谷・須藤（2005）も、ほぼ同時期の世界売上上位99薬剤を対象に同様の報告を行った。Danzon, Wang and Wang（2005）は、1994年から1998年の間に米国あるいはイギリスにおいて承認された新薬品58薬剤を対象に、世界25カ国における上市状況を調査した。主要国での上市薬剤数は、米国73薬剤、ドイツ66薬剤、イギリス64薬剤であり、日本における上市薬剤数はわずか13薬剤であった。

これらの調査により、日本において、世界でよく使われている医薬品へのアクセスが遅れていることは明らかである。しかし、世界売上上位薬剤による分析では、市場は小さいが重要で緊急性が高い稀少疾患の治療薬（オーファンドラッグ）について分析することは困難である。また、日本で最初に承認される医薬品も少なくないことから、米国、ヨーロッパ、日本のいずれかで承認された新薬品を網羅的に対象とし、対象薬剤数を拡大した上で、公平な比較を行うことが望ましいと考え、本研究を計画した。

2）本研究における「アクセスギャップ」の位置付けと本研究の意義

アクセスギャップが問題となるのは、医療上の必要性のある医薬品が利用できないために損失がもたらされる可能性があるからである。したがって、本来の意味でのアクセスギャップを論ずるためには、医療上の必要性を考慮するべきである。疾患の罹患率、医療習慣に地域差があることから、個々の医薬品へのニーズの大きさは地域ごとに異なるであろう。ニーズの大きさにより開発・申請が行われる優先順位が地域ごとに異なる可能性があり、ある地域においてはニーズがない医薬品もあると考えられる。

本研究は、1999年から2005年の間に世界EU、EU、日本における新薬品の承認状況
いう方法も考えられる。しかし、日本においては全体の半数近くが未承認であること、3地域とも約半数について開発が行われていないことから、現時点では日本での承認の見通しのない薬剤が多数存在すると考えられる。そこで、医療の必要性に基づいて開発・承認申請が行われ、実際に承認となった薬剤のみを対象とすることが妥当と考え、各地域での承認されている薬剤のみを対象とすることとした。

次に、各地域で承認されている薬剤のすべてを対象にするべきか否かという問題がある。各地域で承認されている薬剤には、1）3地域とも承認されている薬剤、2）当該地域と他の1地域で承認されている薬剤、3）当該地域でのみ承認されている薬剤の3種類がある。基本的には、1）、2）、3）のすべてを対象（対象A）とすることが妥当であると考えた。しかし、3）は、当該地域でのみニーズのある薬剤である可能性を考慮し、それらを除いて1）と2）を対象（対象B）とした算出も行った。また、1）は、3地域共通にニーズのある薬剤と考えられることから、1）のみを対象（対象C）とした算出も行った。

その結果、各地域とも、対象Aに比べ対象B、Cのタイムラグが大きくなる傾向がみられた。特に日本におけるタイムラグは大きくなり、日本でのみ承認されている薬剤が比較的多くなることによるものと考えられた。しかし、全体としての傾向に変化はあるが、対象Aにおけるタイムラグ平均年数（年数）を基本的な算出方法とすることで大きな問題はないと考えられた。以下の考察においては、対象Aにおけるタイムラグ平均年数（年数）に基づいて議論する。

3）アクセスギャップの現状

新薬334薬剤を対象とした今回の分析では、米国およびEUにおける承認割合は約8割であり、同程度であった。また、初承認となった地域の割合は、EU（34.7％）より米国（51.2％）が高かったものの、承認までのタイムラグ平均年数（年数）は、米国13.5ヶ月（1.1年）、EU13.2ヶ月（1.1年）とほぼ同程度であり、新薬へのアクセスに関して、米国とEUとの間に大きな差はみられなかった。一方、日本における新薬承認割合は54.2％であり、ほぼ半数が承認されていないことが明らかになった。また、承認までのタイムラグ平均年数（年数）は46.1ヶ月（3.8年）と、米国、EUに比較し、平均して約3年の遅れが生じていた。日本でのみ承認されている薬剤があるため、米国、EUでの承認割合は以前の報告と比べると低くなったが、米国、EUと比較した日本での承認までのタイムラグ平均期間は、福原が報告した上市までのタイムラグ平均期間とはほぼ一致した。

対象をオーバフレックに限定すると、タイムラグ平均年数（年数）は、米国10.1ヶ月（0.8年）、EU23.8ヶ月（2.0年）、日本52.6ヶ月（4.4年）と、米国とEU間のギャップが明らかとなり、日本におけるタイムラグ平均年数（年数）は、新薬承認全体での分析に比べ大きくなった。

一方、HIV/AIDS治療薬については、3地域間のギャップは小さかった。対象となった11薬剤とも米国で初承認になっているが、EU、日本においても、米国での承認からあまり遅れることなくすべての薬剤が承認されている。HIV/AIDS治療薬については、日本においても特別な施策が講じられており、米国で利用された英文の承認申請資料で事前審査を行うこと、承認申請から承認まで4ヶ月程度で処理する方針などが通知されている(6)。このような例外的な措置がこの疾患領域でのアクセスギャップを最小限に抑えていると考えられた。

6) 医薬品第105号「HIV感染症治療薬の製造又は輸入承認申請の取り扱いについて」，平成10（1998）年11月12日
4）調査対象期間の設定

本研究では、1999年から2005年の7年間に、米EUにおいて承認を取得した新薬品334薬剤を対象とした。

1999年から2005年までを対象とした理由は、後述するように、1999年以降であれば3地域の規制当局の公開情報により承認状況を網羅的に調査することが可能であり、調査時点（2006年10月末）で、2005年末日までの情報が得られていたためである。ヨーロッパについては、1995年以降、EMEAがcentralized procedureによりEU全域での販売承認を行うようになっており、新薬品についてはcentralized procedureを利用して提案されるよう推奨されている。centralized procedureで承認を取得した薬剤についてはすべてEPARが公開されていることから、もれなく情報収集するためには全EPARの中から新薬品を選択する方法が最良と考えた。実際には、新薬品であっても国ごとに承認を取得しているものがあるので、すべてをリストアップできていない可能性がある。

また、今回の研究では、タイムラグが20年を超えるような大きな地域間ギャップのある薬剤が一定数存在したが、1970年代、1980年代に承認された薬剤については承認年から調査不能なことがあり、一部はタイムラグの計算から除外される得なかった。以上のように、データの完全性の観点からはいくつかの限界があった。しかし、新薬品334薬剤のデータは従来にはない網羅性を有しており、基礎的な分析結果が得られたことは意義があると考えられる。

5）アクセスのハードルとしての「承認」、「上市」、「保険償還リスト収載」

医薬品へのアクセスを評価するパラメータとしては「承認」（approval）を用いた。医薬品が開発され、承認、上市、保険償還リストへの収載などの一連のプロセスを通じて患者の元に届くまでにはいくつかのハードルがある。患者のアクセスの観点からは、実際に利用可能となる段階が最も重要ではあるが、地域ごとの医療制度の相違により、患者に近くなるほど考慮すべき要因が多くなるため、国際比較を行うにあたりどのパラメータを用いるかについては一長一短があると考えられる。

「承認」は、医薬品候補化合物が地域において公的に医薬品として認められる段階であり、アクセスへの第一のハードルといえる。「上市」（launch）は、その地域で販売され、実際に利用可能となる段階であり、より患者に近い。ただし、日本では承認約3ヶ月後の薬価収載を経てただちに販売が開始され、薬価の決定は自由価格である。米国では承認後ただちに販売が開始されるのに対し、ヨーロッパの国々では価格が決定するまで上市されないことがあり、低価格であるため上市が見送されることもある。

「保険償還リスト収載」（inclusion in reimbursement list）は、薬価が保険償還となるか否かを決定する、患者アクセスの観点から重要なファクターであるが、日本は承認医薬品のほぼすべてが保険償還対象となっている。米国では承認後に保険償還対象が決定されること、ヨーロッパでは国ごとに異なるなど、状況はさまざまなである。

すなわち、「上市」、「保険償還リスト収載」をパラメータとした場合、地域ごとに異なるさまざまな要因をより多く含むことになる。

医薬品へのアクセスを論じたにあたっては、研究の目的とデータの利用可能性により、どのパラメータを用いるかよく吟味するべきと考えられる。

今回の研究は、アクセスへの第一段階かつ必須条件である「承認」に焦点を当て、関係する要因を比較的シンプルにした3地域比較と位置づけられる。

6）利用したデータソースについて

今回の研究では、表1に示した10種のデータソースを用いた。
各地域の規制当局のデータソースからは承認年月日が収集可能であり、今回、「承認」をパラメータとして選択した理由の一つである。「承認」年月日のデータは公的データソースからは無料で得られるというメリットはあるが、上述のとおり、各地域の規制当局がリスト化して公開しているのは過去数年間のものに限られる。今回の調査時点（2006年10月末）で、PMDAは1999年に発足の新医薬品承認情報をリスト化して公開していた。PMDAは過去約7年間の承認情報を公開しているが、古いものは順次削除されるため、1999年9月以降の情報が公開されていた。そこで、「最近の新薬」を用いて1999年前半の承認情報を調査した。
PMDAは機関情報セクションを一括して公開しているのに対し、「最近の新薬」は新医薬品のみリスト化して紹介しているという利点があり、PMDAの承認情報を確認する上でも有用であった。

一方、医薬品の開発・上市情報データベース化した民間の有料データベースからは「上市」年月を得ることができる。「承認」年月日が得られるものは一部であり、「承認」、「上市」とも年月日まで特定できるものは稀である。これらのデータベースは高額であり、得られる情報に限りがあるものの、調査対象として特定された薬剤の開発・上市状況を簡便に調査する上では有用である。医薬品の開発・上市情報データベースとしては、今回使用した「IMS R&D Focus」（開発情報が全体）と「IMS New Product Focus」（上市情報が全体）のほか、「Pharmaprojects」（PJB Publications Ltd.），「IDdb3」（Thomson），「明日の新薬」（テクノミック）などがある。これらのデータベースは新聞・文献情報、企業からの情報により構築されており、内容に大きな違いはない。IMSのデータベースは比較的安価であり、2種のデータベースにより二重の確認が可能であるため、今回はIMSのデータベースを選択した。

上述のとおり、IMSのデータベースからは正確な承認年月日は得られない。年代が古いほど情報を得るのは困難であり、特に日本の状況が不明であることが多かった。しかし、IMSのデータベースを用いて調査した薬剤の半数以上については、少なくとも承認の有無と承認年月までの情報は収集でき、情報不十分である場合には、申請企業のウェブサイト、FDA CDERの“Drugs@FDA”，PMDAのウェブサイト「添付文書情報」、日本製薬工業協会のウェブサイト「開発中の新薬」など、さまざまなデータソースを用いて承認の有無と承認年月日を調査した。その結果、9割以上で正確な承認年月日が得られ、それ以外の大半の薬剤についても承認年月が特定された。承認年月が不明なためタイムラグの計算から除外されざるを得なかったものわずか8薬剤（2.4%）であった。

今回の研究では上述のさまざまなデータソースを用いたが、各データソースが有している情報には限りがあり、必要な情報をもれなく得るためには、いくつかのデータソースの組み合わせにより調査を行う必要があることがわかった。本研究での経験は、研究の目的に沿った情報を効率的に収集する方法論の構築のため有益であると考えられた。

7 今後の研究の方向性について
オープンデータ上の限定した分析において、新医薬品全体の分析に比べ3地域のギャップが大きくなくなる傾向がみられたことは注目される。オープンデータ上の分析においては、しばしば市場の低さが問題にされるが、米国、EU、日本のいずれにおいてもオープンデータ開発振興制度は存在しており、その内容は、助成金交付、指導・助言、優先審査、市場独占期間（日本においては再審査期間）の延長など同様のものである。それにもかかわらずギャップが大きくになっている背景として、その運用上の差異があるのか否か、今後分析が必要と考えられる。さらに、日本において未承認オープンデータの約8割について
開発が行われていなかったことはより注目すべき所見である。日本における未承認オーファンドラッグの米国、EUにおける申請者の大半はいわゆるバイオベンチャーであり、候補化合物の日本への導入が停滞している可能性が考えられる。今後、未承認オーファンドラッグについては、ライセンスの状況も含めた詳細調査を行う予定である。

アクセスギャップは複合的要因の結果であると考えられる。本研究は、承認の有無と時期に関するデータに基づいてアクセスギャップの定量的全体像をみたものであり、承認の遅れが、候補化合物導入の遅れによるものか、開発遅延によるものか、承認審査の遅れによるものか、などの分析を行っておらず、アクセスギャップの要因について議論することは困難である。今後、各地域における未承認薬についてさらなる分析を行うとともに、考えるさまざまな要因との関係について分析を行う。また、アクセスギャップの年度ごとの推移の分析も行う予定である。特に、重篤で緊急性が高い、代替治療のない疾患の治療薬へのアクセスはきわめて重要な問題であることから、オーファンドラッグを中心とした分析を行い、アクセスギャップの要因について稿を改めて議論したい。

5．結論

（1）米国とEUにおける新薬の承認割合はいずれも約8割で、承認までのタイムラグはいずれも約1年と、新薬の承認に関して、米国とEUとの間に大きな差はみられない。（2）日本においては約半数の新薬が未承認であり、米国、EUに比べ、平均して約3年の承認の遅れが生じている。（3）オーファンドラッグに限定すると、米国とEU間のギャップが明確となり、全体の分析と比較し、日本におけるタイムラグが大きくなる。（4）HIV/AIDS治療薬については、3地域間のアクセスギャップは小さい。

謝辞

本研究は、RIIC USA Corporationとの共同研究として行われた。本稿執筆にあたり貴重な助言をいただいたレフェリーに感謝の意を表する。

参考文献

島谷克義、須藤隆夫 (2006)「開発戦略における日本の課題」「医療と社会」15(1) : 43-50

津谷喜一郎、五十嵐隆、森川 譲 (2004)「ATC/DDDとは何か－医薬品の合理的使用を目指すものさし－」『薬剤師学』9(2) : 53-58

福原浩行 (2006)「医薬品の世界初上市から各国における上市までの期間－日本の医薬品へのアクセス改善に向けて－」『医薬産業政策研究所リサーチペーパー・シリーズNo.31』

連絡先：辻 香織

kaotsuji@iken.org

257
Access to 334 New Chemical Entities (NCEs) in the US, EU and Japan

Kaori Tsuji1,2 Kiichiro Tsutani3

Abstract

New Chemical Entities (NCEs) approved either the US, EU or Japan between 1999 and 2005 were identified. Total 334 NCEs were identified and the approval dates in three regions were obtained for each NCE. The number and the percentage of approved NCEs in each region were calculated. The approval lag against the first approval was obtained for each approved NCE and the mean approval lag for each region were calculated.

Out of 334 NCEs, 274 (82.6%) were approved in the US, 262 (78.4%) in EU and 181 (54.2%) in Japan. The mean approval lag for each region was 13.5 months (1.1 years) in the US, 13.2 months (1.1 years) in EU and 46.3 months (3.9 years) in Japan. Out of 60 NCEs designated as orphan drug (except for anti-HIV drugs) either in 3 regions, 52 (86.7%) were approved in the US, 49 (81.7%) in EU and 32 (53.3%) in Japan. The mean approval lag was 10.1 months (0.8 years) in the US, 23.8 months (2.0 years) in EU and 52.6 months (4.4 years) in Japan.

There was not a big difference between the US and EU. Approximately 80% of NCEs was approved and the approval lag was about 1 year both for the US and EU. In Japan, about the half of all NCEs was not approved and the approval delay from the US and EU was nearly 3 years. As for orphan drugs, the gap between the US and EU became apparent and the gap between Japan and the US/EU was widened.

Keywords: Drug lag, 3 Regions (US, EU, Japan), Drug approval, New chemical entities (NCEs), Orphan drugs

1) Ph.D. Candidate, Graduate School of Pharmaceutical Sciences, The University of Tokyo
2) The Health Care Science Institute
3) Graduate School of Pharmaceutical Sciences, The University of Tokyo