Cardiovascular disease (CVD) is the leading cause of mortality and morbidity in industrialized countries. In a working population, occupational factors are believed to pose a threat to workers’ cardiovascular health. Substantial research has shown that adverse physical and psychosocial work environments and working conditions, such as shift work and excessive workload, are related to CVD. To examine the acute and chronic effects of such work-related factors on the cardiovascular system, cardiac autonomic nervous system activity during work and rest has been assessed by heart rate variability (HRV).

Heart rate is recorded by electrocardiography. The measured signal shows a series of waves that present electrical events in the four chambers and the conduction pathways within the heart. The time interval between consecutive R waves that correspond to the contraction of the ventricles is called the RR interval (RRI). HRV is generated in part by periodic inputs of both respiration and blood pressure variability into the medullary cardiovascular centers. These periodic modulations are clearly identified within the power spectrum of HRV as peaks at the respiratory frequency and at the frequency of the well-known Mayer wave in blood pressure variability.

HRV is a time series of RRIs that fluctuate beat by beat in healthy humans because of time-to-time changes in activities of sympathetic and parasympathetic nerves innervating to the sinus node.

HRV is generated in part by periodic inputs of both respiration and blood pressure variability into the medullary cardiovascular centers. These periodic modulations are clearly identified within the power spectrum of HRV as peaks at the respiratory frequency and at the frequency of the well-known Mayer wave in blood pressure variability.

Heart rate increases and decreases during inspiration and expiration, respectively. This is mainly caused by the physiological fact that parasympathetic output from the cardiovascular center is inhibited during inspiration. Respiratory rhythm during rest is about 0.25 Hz. Therefore,
the amplitude of variations in HRV related to respiration (i.e. respiratory sinus arrhythmia) is considered to reflect the fluctuation in tonic parasympathetic input, and the integrated spectral power of high frequency (HF, > 0.15 Hz) HRV is used as an index of the level of parasympathetic activity5). The Mayer wave is a 10-s oscillation of blood pressure. The wave is mediated mainly by the sympathetic nervous system. The wave elicits a 10-s oscillation in HRV by modulating both sympathetic and parasympathetic nerve activities via baroreceptors. As a result, low-frequency (LF, 0.04–0.15 Hz) power of HRV reflects both sympathetic and parasympathetic activity and the LF/HF ratio is considered to mirror sympathovagal balance5). Therefore, the frequency analysis of HRV is able to provide results that are more easily interpretable in terms of physiological regulation. To standardize physiological and clinical studies, short-term recordings of 5 min under physiologically stable conditions are recommended for HRV frequency-domain methods5). For long-term (> 5 min) recordings, the frequency analysis should be performed in 5-min segments or over the total 24-h record5). The HF and LF components of power spectral density obtained from the entire 24-h record are not different from the mean HF and LF components obtained from 5-min segments over the entire 24-h period.

For descriptive statistical methods, several time-domain measures are recommended by the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (Task Force)5). The measures for overall variation include the standard deviation of all normal-to-normal (NN) intervals (SDNN) and the HRV triangular index, which is the number of NN intervals divided by the number of NN intervals within the modal bin of the NN interval histogram. The mean of the 5-min standard deviations of NN intervals calculated over several hours (SDNN index) is the measure of variation due to cycles shorter than 5 min. The measure of variation due to cycles longer than 5 min is the standard deviation of the average NN interval calculated over 5 min (SDANN). The estimates for short-term variation are the root mean squared differences of successive NN intervals (RMSSD).

Low HRV has been utilized in clinical studies of patients with CVD to predict a variety of cardiovascular outcomes5), and in healthy populations' all cause and cardiac mortality6–8), as well as new onset of hypertension9). Low HF power of the HRV spectrum is also a risk for mortality in patients, who have had myocardial infarction10–12) and who have coronary artery disease13) or congestive heart failure14, 15).

The goal of this paper was to review studies of HRV concerning occupational health. Given the functional utility of HRV analysis, it may inform us of the autonomic effects of many factors at the workplace, such as work environments, workloads, and working time. The information quantified by HRV may help to determine effective strategies for health assessment and promotion at work and also future research needs. This systematic review included only studies which used one or more of the above mentioned indices of HRV, which are recommended by the Task Force5), as a dependent variable.

Methods

We conducted a systematic review of all English articles using MEDLINE (Ovid, Pubmed) to identify all observational studies assessing the association between work and HRV. Key words used for the computer searches were: work, worker, occupational, industrial, and heart rate variability. Studies were included in our review if one or more of the dependent variables was one of the time- or frequency-domain indexes of HRV recommended by the Task Force5), as mentioned in the Background. Studies in which participants were not workers (subjects without occupational exposure) were not included. Forty-six studies published from 1994 to July 2007 were included in the review. Sample sizes of these studies ranged from 6 to 2,197, with a median of 51.5. It is notable that only 2 of 46 studies (4%) utilized longitudinal study designs. Factors of occupational exposure were classified as a) physical and chemical work environment, b) psychosocial workload, or c) working time. Table 1 presents a summary of the studies reviewed.

Results

Physical and chemical work environment

Particulate matter

Magari et al.10) found that mean RRI and SDNN on workdays decreased with increase in a 4-h moving average of fine particle (particulate matter with a mean aerodynamic diameter ≤ 2.5 μm, PM\textsubscript{2.5}) concentration after controlling for time of day, age, and urinary nicotine levels in male boilermakers and a pipe fitter. Lead and vanadium concentrations as a component of PM\textsubscript{2.5} were positively associated with the SDNN index during work in the male boilermakers after controlling for mean RRI, age, and smoking status17).

Exposure to high levels of PM\textsubscript{2.5}, mainly from welding fume was significantly associated with reduced mean RRI, SDNN, RMSSD, and HF and LF components on workdays in the male boilermakers after controlling for time of day and time-varying activities18). The responses were greater in subjects with a high CVD risk profile than in subjects with a low CVD risk profile.

Particles of motor vehicle origin, as an occupational
Table 1. Studies of industrial environment and heart rate variability in workers

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Population</th>
<th>N (men/women or total)</th>
<th>Duration of recording</th>
<th>Condition at recording</th>
<th>Data length for analysis</th>
<th>Comparison</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical and chemical work environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magari et al. 2001(b)</td>
<td>boilermakers and a pipe fitter</td>
<td>33/0</td>
<td>24 h × 2 d</td>
<td>workday</td>
<td>every 5 min</td>
<td>PM2.5</td>
<td>↓ (\downarrow) - - - - -</td>
</tr>
<tr>
<td>Magari et al. 2002(23)</td>
<td>boilermaker construction workers</td>
<td>39/0</td>
<td>8–10 h</td>
<td>workday</td>
<td>every 5 min</td>
<td>PM2.5</td>
<td>n.s. - ↑ - - - - -</td>
</tr>
<tr>
<td>Chen et al. 2006(34)</td>
<td>boilermakers</td>
<td>10/0</td>
<td>24 h</td>
<td>workday</td>
<td>every 5 min</td>
<td>PM2.5</td>
<td>↓ (\downarrow) - - - - n.s.</td>
</tr>
<tr>
<td>Riedkies et al. 2004(32)</td>
<td>highway patrol troopers</td>
<td>9/0</td>
<td>20 min</td>
<td>resting in the morning</td>
<td>last 10 min</td>
<td>PM2.5</td>
<td>↑ ↑ - - - - -</td>
</tr>
<tr>
<td>Riedkies et al. 2004(32)</td>
<td>highway patrol troopers</td>
<td>9/0</td>
<td>20 min</td>
<td>resting in the morning</td>
<td>last 10 min</td>
<td>PM2.5</td>
<td>↑ ↑ - - - - n.s.</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bortkiewicz et al. 1997(21)</td>
<td>a. workers at a chemical fibre plant b*. healthy workers</td>
<td>a. 152/0 b. 930</td>
<td>512 points</td>
<td>resting in the morning after the night rest</td>
<td>512 points</td>
<td>a vs. b</td>
<td>↓ (\downarrow) - - ↓ - n.s.</td>
</tr>
<tr>
<td>Bhall et al. 2001(25)</td>
<td>a. workers with carbon disulfide poisoning b*. healthy workers</td>
<td>a. 71/0 b. 1270</td>
<td>3 min</td>
<td>resting</td>
<td>3 min</td>
<td>a vs. b</td>
<td>n.s. (\downarrow) - - n.s. - - -</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murata et al. 1996(22)</td>
<td>a. glass workers b*. textile workers</td>
<td>a. 0/06 b. 0/15</td>
<td>300 points</td>
<td>resting</td>
<td>300 points</td>
<td>a vs. b</td>
<td>n.s. - - - - ↑</td>
</tr>
<tr>
<td>Gajek et al. 2004(20)</td>
<td>a. copper foundry workers b*. healthy workers</td>
<td>a. 2230 b. 1300</td>
<td>24 h</td>
<td>daytime after at least 20 min rest and night (0400–0415)</td>
<td>15 min × 2 sessions</td>
<td>a vs. b</td>
<td>n.s. n.s. n.s. n.s. n.s. n.s. n.s.</td>
</tr>
<tr>
<td>Böckelmann et al. 2002(25)</td>
<td>a. lead-exposed workers b*. healthy workers</td>
<td>a. 1080 b. 2700</td>
<td>-</td>
<td>resting, psychometric strain test (number memory test), and recovery periods in the morning</td>
<td>-</td>
<td>a vs. b at baseline</td>
<td>n.s. (n.s.) - - n.s n.s - -</td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrington et al. 1998(29)</td>
<td>a. manganese alloy workers b*. healthy workers or published normals</td>
<td>a. 8 b. 8 or 274</td>
<td>24 h</td>
<td>-</td>
<td>24 h</td>
<td>a vs. b</td>
<td>↓ n.s. - ↓ ↓ ↓ -</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohyazi et al. 2005(33)</td>
<td>taxi drivers</td>
<td>20/0</td>
<td>18 h</td>
<td>workday (0800–0200)</td>
<td>every 5 min</td>
<td>smoking</td>
<td>- - - - n.s. - ↑</td>
</tr>
<tr>
<td>Electromagnetic field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bortkiewicz et al. 1996(20)</td>
<td>a. workers on AM broadcast stations b*. workers of radio link stations</td>
<td>a. 71 b. 22</td>
<td>512 points</td>
<td>resting in the morning</td>
<td>512 points</td>
<td>a vs. b</td>
<td>↑ n.s. - - - n.s. n.s.</td>
</tr>
<tr>
<td>Wieth et al. 2007(31)</td>
<td>a. radiofrequency operators b*. healthy workers</td>
<td>a. 18/17 b. 14/23</td>
<td>24 h</td>
<td>workday</td>
<td>every 1 h</td>
<td>a vs. b</td>
<td>- (\downarrow) - - n.s. - -</td>
</tr>
<tr>
<td>Bortkiewicz et al. 2006(33)</td>
<td>a. switchyard substations b*. radio link stations</td>
<td>a. 63/0 b. 42/0</td>
<td>512 points</td>
<td>resting in the morning</td>
<td>512 points</td>
<td>a vs. b</td>
<td>n.s. - - n.s n.s</td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasker and Harada, 1999(11)</td>
<td>a. chainsaw operators and tunnel construction workers with hand-arm vibration syndrome b*. healthy workers</td>
<td>a. 21/0 b. 10/0</td>
<td>2 min</td>
<td>resting</td>
<td>2 min</td>
<td>a vs. b</td>
<td>n.s. n.s. - - ↓ - -</td>
</tr>
<tr>
<td>Lasker et al. 1999(12)</td>
<td>a. patients with hand-arm vibration syndrome with VWF b. patients with hand-arm vibration syndrome without VWF c*. healthy workers</td>
<td>a. 16/0 b. 13/0 c. 12/0</td>
<td>4 min</td>
<td>supine deep breathing before and after psychological test</td>
<td>2 min × 2 sessions</td>
<td>b vs. c</td>
<td>n.s. (\downarrow) - - - - -</td>
</tr>
<tr>
<td>Sakaihara et al. 2002(30)</td>
<td>a. patients with VWF b*. healthy workers</td>
<td>a. 21/0 b. 17/0</td>
<td>50 min</td>
<td>resting, cold water immersion, and recovery</td>
<td>128 s × 8 sessions</td>
<td>a vs. b</td>
<td>↑ - - - n.s. ↑ ↑</td>
</tr>
<tr>
<td>Cold environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bortkiewicz et al. 2006(33)</td>
<td>cold storage workers</td>
<td>63/0/9</td>
<td>512 points</td>
<td>resting in the morning</td>
<td>512 points</td>
<td>cold microclimate</td>
<td>n.s. n.s. - - n.s n.s n.s</td>
</tr>
</tbody>
</table>

Notes:
- n.s.: not significant
- ↑: significant increase
- ↓: significant decrease
- \(\downarrow\): significant decrease
- \(\uparrow\): significant increase
Psychosocial workload

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Population</th>
<th>N (men/women or total)</th>
<th>Duration of recording</th>
<th>Condition at recording</th>
<th>Data length for analysis</th>
<th>Comparison</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins et al. 2005<sup>56</sup></td>
<td>Job strain day workers</td>
<td>36/0</td>
<td>24 h x 2 d</td>
<td>workday and the next rest day</td>
<td>every 5 min</td>
<td>job strain</td>
<td>↓ - - - ↓ ↑</td>
</tr>
<tr>
<td>van Amelvoort et al. 2003<sup>57</sup></td>
<td>workers in the integrated circuit manufacturing industry, waste incinerator plants, or in hospitals</td>
<td>135</td>
<td>24 h</td>
<td>morning or day shift</td>
<td>every 5 min</td>
<td>job strain</td>
<td>↑ n.s. - - n.s. ↑ -</td>
</tr>
<tr>
<td>Riese et al. 2004<sup>58</sup></td>
<td>nurses</td>
<td>0/159</td>
<td>24 h x 2 d</td>
<td>the third morning shift (0730–1615) and rest day</td>
<td>every 30 s</td>
<td>job strain</td>
<td>n.s. - - n.s. - -</td>
</tr>
<tr>
<td>Kang et al. 2004<sup>59</sup></td>
<td>workers employed in the ship-building industry aged over 40</td>
<td>167/0</td>
<td>5 min</td>
<td>resting</td>
<td>5 min</td>
<td>job stress</td>
<td>- n.s. - - n.s. n.s. -</td>
</tr>
<tr>
<td>Kageyama et al. 1999<sup>60</sup></td>
<td>white collar workers</td>
<td>223/0</td>
<td>5 min</td>
<td>supine and standing rest during late morning or early afternoon</td>
<td>3 and 2 min</td>
<td>job stress</td>
<td>n.s. - - n.s n.s. -</td>
</tr>
<tr>
<td>Vrijkotte et al. 2000<sup>62</sup></td>
<td>white collar workers</td>
<td>109/0</td>
<td>24 h x 3 d</td>
<td>2 workdays and a rest day</td>
<td>every 30 s</td>
<td>work stress</td>
<td>↓ - - ↓ - -</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemingway et al. 2005<sup>63</sup></td>
<td>clerical civil servants</td>
<td>2,197/0</td>
<td>5 min</td>
<td>resting</td>
<td>5 min</td>
<td>employment grade</td>
<td>↓ ↓ - - ↓ ↓</td>
</tr>
<tr>
<td>Organizational injustice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elovainio et al. 2006<sup>65</sup></td>
<td>workers in long term care homes</td>
<td>0/57</td>
<td>5 min</td>
<td>resting</td>
<td>5 min</td>
<td>injustice</td>
<td>- - - - ↓ -</td>
</tr>
<tr>
<td>White-collar office work for hypertensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobayashi et al. 2001<sup>66</sup></td>
<td>white-collar workers</td>
<td>22/0</td>
<td>24 h</td>
<td>workday</td>
<td>512 points (every 30 min)</td>
<td>hypertension</td>
<td>n.s. - - - ↓ ↓ ↑</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichot et al. 2002<sup>67</sup></td>
<td>a. garbage collectors b. healthy sedentary workers</td>
<td>a. 6/0 b. 8/0</td>
<td>4 h x 8 d</td>
<td>nocturnal sleeping (0000–0400) on workday</td>
<td>every 256 points</td>
<td>a vs. b</td>
<td>↓ n.s. n.s. ↓ ↓ ↓ n.s.</td>
</tr>
<tr>
<td>Watanabe et al. 2002<sup>68</sup></td>
<td>workers of an electric instrument corporation</td>
<td>52/0</td>
<td>5 min</td>
<td>resting in the morning</td>
<td>5 min</td>
<td>vital exhaustion</td>
<td>- - - - ↓ n.s.</td>
</tr>
<tr>
<td>Sasaki et al. 1999<sup>69</sup></td>
<td>engineers</td>
<td>18/0</td>
<td>3 min</td>
<td>resting in the afternoon on workday</td>
<td>3 min</td>
<td>working hours</td>
<td>- - - - - n.s.</td>
</tr>
<tr>
<td>Sasaki et al. 1999<sup>69</sup></td>
<td>engineers</td>
<td>14/0</td>
<td>3 min</td>
<td>resting in the afternoon on workday</td>
<td>3 min</td>
<td>working hours</td>
<td>n.s. - - - - n.s.</td>
</tr>
<tr>
<td>Kuriya et al. 2006<sup>70</sup></td>
<td>information service workers</td>
<td>41/0</td>
<td>10 min</td>
<td>resting</td>
<td>last 150 points</td>
<td>subjective symptoms</td>
<td>- - - - ↓ n.s.</td>
</tr>
<tr>
<td>Aasa et al. 2006<sup>72</sup></td>
<td>ambulance personnel</td>
<td>24/2</td>
<td>24 h x 3 d</td>
<td>24-h shift (1700–1700) and the next two rest days</td>
<td>(mean values of 1 h intervals)</td>
<td>health complaints</td>
<td>n.s. - - - ↓ ↑</td>
</tr>
<tr>
<td>Train driving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrtek et al. 1994<sup>73</sup></td>
<td>train drivers</td>
<td>23/0</td>
<td>1,387 min</td>
<td>workday</td>
<td>every 1 min</td>
<td>speed</td>
<td>↑ - - ↓ - -</td>
</tr>
<tr>
<td>Working time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ito et al. 2001<sup>74</sup></td>
<td>nursing staff</td>
<td>0/10</td>
<td>24 h x 2 d</td>
<td>a. day shift (0800–1700) b. night shift (2140–0840)</td>
<td>512 s (each hour)</td>
<td>a vs. b</td>
<td>n.s. - - - n.s. n.s.</td>
</tr>
<tr>
<td>Freitas et al. 1997<sup>75</sup></td>
<td>oil refinery security workers</td>
<td>12/0</td>
<td>24 h x 2 d</td>
<td>a. day shift (0600–1400) b. night shift (2200–0600)</td>
<td>512 points (each hour)</td>
<td>a vs. b</td>
<td>n.s. - - - n.s. n.s.</td>
</tr>
<tr>
<td>Adams et al. 1998<sup>76</sup></td>
<td>emergency physician</td>
<td>8/4</td>
<td>24 h</td>
<td>1500–1700; the middle of night shift (2300–0700), and after the shift</td>
<td>2 h x 3 sessions</td>
<td>night work</td>
<td>↓ ↓ - - ↓ - ↑</td>
</tr>
<tr>
<td>Ishii et al. 2005<sup>77</sup></td>
<td>a. shift nurses b*. non-shift nurses</td>
<td>0/91</td>
<td>300 points</td>
<td>resting in the evening (1700–1900) following day work</td>
<td>300 points</td>
<td>a vs. b</td>
<td>n.s. - - - ↓ -</td>
</tr>
<tr>
<td>Murata et al. 2005<sup>78</sup></td>
<td>a. shift workers b*. day workers</td>
<td>a. 15/0 b. 8/0</td>
<td>300 points</td>
<td>resting in the morning (0800–1200) of day shift or rest day</td>
<td>100 points with minimum SD</td>
<td>a vs. b</td>
<td>n.s. - - - n.s. ↓ n.s.</td>
</tr>
<tr>
<td>Ha et al. 2001<sup>79</sup></td>
<td>a firm manufacturing diapers and feminine hygienic materials</td>
<td>134/0</td>
<td>5 min x 3 sessions</td>
<td>resting on the second or third day of the 3-day period of morning, afternoon, and night shift</td>
<td>middle 3 min x 3 sessions</td>
<td>shift work</td>
<td>- - - - ↓ - -</td>
</tr>
</tbody>
</table>

Table notes:

- **55** indicates a study with a sample size of 55.
- **56** indicates a study with a sample size of 56.
- **57** indicates a study with a sample size of 57.
- **58** indicates a study with a sample size of 58.
- **59** indicates a study with a sample size of 59.
- **60** indicates a study with a sample size of 60.
- **62** indicates a study with a sample size of 62.
- **63** indicates a study with a sample size of 63.
- **65** indicates a study with a sample size of 65.
- **66** indicates a study with a sample size of 66.
- **67** indicates a study with a sample size of 67.
- **68** indicates a study with a sample size of 68.
- **69** indicates a study with a sample size of 69.
- **70** indicates a study with a sample size of 70.
- **72** indicates a study with a sample size of 72.
- **73** indicates a study with a sample size of 73.
- **74** indicates a study with a sample size of 74.
- **75** indicates a study with a sample size of 75.
- **76** indicates a study with a sample size of 76.
- **77** indicates a study with a sample size of 77.
- **78** indicates a study with a sample size of 78.
- **79** indicates a study with a sample size of 79.
source of PM$_{2.5}$, were not associated with a decrease in HRV. Riediker et al.19, 20 reported an association between in-vehicle PM$_{2.5}$ during work and HRV at rest on the next morning in non-smoking male highway patrol troopers. The PM$_{2.5}$ was significantly positively associated with mean RRI, SDNN, and the HF component, and negatively associated with the LF/HF ratio20. Among sources of in-vehicle PM$_{2.5}$, the “speed-change” factor was dominated by copper, sulfur, and aldehydes were significantly associated with mean RRI and SDNN19.

Carbon disulfide

In male workers at chemical fiber plants who worked under conditions of continuous exposure to carbon disulfide (CS$_2$), mean RRI, total power (TP) of HRV power spectral density, the normalized HF component (HF as a percentage of TP), the normalized LF component (LF as a percentage of TP), and the normalized very low frequency (VLF, 0.0033–0.04 Hz) component (VLF as a percentage of TP) during rest were significantly lower than those in age-matched, unexposed, healthy male controls21. In retired male workers with CS$_2$ poisoning, the LF component and TP during rest were significantly lower than those of age-matched control subjects who had no history of organic-solvent exposure and CVD22.

Lead

The LF/HF ratio during rest was significantly lower in female glass workers exposed to lead (mean blood lead concentration: 556 µg/l) than in female textile workers unexposed to lead (mean blood lead concentration: 63 µg/l)23. In contrast, Gajak et al.24 did not find a significant difference in the LF/HF ratio, assessed in 15-min RRRs during rest in the daytime and at night, between male copper foundry workers (mean blood lead concentration: 410 µg/l) and age-matched healthy male controls (mean blood lead concentration: 36 µg/l). Among the subjects exposed to lead, a negative correlation was found between the lead concentration and the ratio of nighttime HF to daytime HF24. In a longitudinal study that examined the effect of 4 yr of lead exposure on HRV25, mean blood lead levels of lead-exposed workers increased from 390 µg/l to 430 µg/l over 4 yr. Mean RRI and HF component during rest, the psychometric strain test (number memory test), and recovery conditions in the morning were significantly lower than the initial values in the follow-up investigation 4 yr later.

Manganese

Mean RRI, RMSSD, and HF and LF components in manganese alloy workers were significantly smaller than in healthy controls while the LF/HF ratio was significantly larger in the workers than in the controls, although whether RRRs were collected on workdays or rest days was not specified26.

Smoking

The LF/HF ratio significantly increased immediately after smoking at night in taxi drivers27. Smoking caused acute effects on HRV under their ordinary work conditions27.

Electromagnetic field

A statistically significant negative correlation was found between the maximum exposure level of electromagnetic field (EMF) intensity and the HF component during rest in workers occupationally exposed to medium frequency (0.7–1.5 MHz) EMF, although some frequen-
cy-domain parameters of HRV (HF and LF components, TP, and LF/HF ratio) did not differ between exposed (radiofrequency exposure: 113.3 Vh/m/d) and unexposed workers (radiofrequency exposure: 0 Vh/m/d). In contrast, TP and the VLF component among operators of radiofrequency (RF) plastic sealers (mean electric field strength: 88 V/m) during the nighttime were significantly increased when compared with a control group. One study found that the relative risk of decreased SDNN (SDNN < 27 ms) during rest was significantly higher in workers of switchyard substations who were occupationally exposed to 50 Hz EMF (EMF exposure: 0.2–15.2 kVh/m/d) when compared with unexposed workers (EMF exposure: 0 kVh/m/d). The VLF component was significantly higher in the exposed group and was accompanied by a significant increase in arterial blood pressure which was correlated with the exposure level.

Vibration
Laskar et al. reported that workers with hand-arm vibration syndrome showed significantly decreased HF and LF components during rest and significantly decreased SDNN and RMSSD during rest after a psychological test when compared with the healthy controls. Among operators with vibration-induced white finger, the LF/HF ratio increased significantly during immersion of the hand in cold water at 10°C, but did not increase in healthy controls.

Cold environment
Any selected HRV parameters (SDNN and HF, LF, and VLF components) during rest in the morning did not differ between workers who were chronically exposed to different microclimate conditions (−26 to 20°C).

Psychosocial workload
Job strain
Work stress is usually defined as job strain according to the model of Karasek et al. The relationship between job strain and 5-min HRV over 48 h, a work day and a rest day, was examined in subjects covering a wide range of occupations in a range of industry sectors. Subjects in high-strain jobs held positions such as letter carrier, laborer, printer, quality technician, and tele/data communications, while subjects in low-strain jobs held positions such as teacher, business agent, retirement specialist, and buyer. Job strain and low decision latitude were associated with decreases in the HF component. Job strain was also associated with increases in the LF/HF ratio during working hours. Among daytime and shift workers, van Amelsvoort et al. found a significantly elevated normalized LF component during work in the low demands and low control group, high demands and high control group, and high demands and low control group when compared with a group reporting low job demands and high work control after controlling for age, gender, smoking status, leisure time physical activity, and mean values during sleep. Three studies have been performed on a homogeneous group of healthy workers: one reported no effect of job strain by itself or in interaction with social support on 30-s HRV (RMSSD) over 24 h on a workday and a rest day in female nurses; the second did not find significant differences in parameters of 5-min HRV (SDNN, HF, LF, and VLF components, TP, and LF/HF ratio) during rest between high- and low-strain groups in male workers employed in the shipbuilding industry; and the third found that subjects who complained of poor sleep quality, which is associated with job stress, exhibited a reduced HF component during standing rest, although job stressors were not correlated with HRV in male workers employed by a private company.

When chronic work stress was defined according to Siegrist’s model of effort-reward imbalance as (a) high imbalance, a combination of high effort and low reward at work, or (b) high overcommitment, an exhaustive work-related coping style indexing the inability to unwind, high imbalance was associated with a lower RMSSD during work, leisure time, and sleep on workdays and a rest day in middle-aged white-collar workers working at the same computer company.

Employment
Among healthy clerical civil servants working in the London offices of 20 departments, low employment grade was associated with low HRV (SDNN, and HF and LF components) during rest after controlling for age.

Organizational injustice
Organizational justice for women working in long-term care homes was measured using the scale of Moorman. The low perceived justice group showed an 80% excess risk of reduction in the HF component during rest when compared with the high perceived justice group.

White-collar office work for hypertensive
The LF/HF ratio during work of white-collar workers with hypertension was significantly higher than that of normotensives. As a result, LF/HF during 24 h including a workday of hypertensives was significantly higher than that of normotensives.

Fatigue
One study examined the effects of cumulative fatigue on HRV. The HRV of six garbage collectors was measured twice a week during three consecutive weeks of work, and during the following week of rest. During
the weeks of work, there was a significant progressive decrease in mean RRI, RMSSD, and the HF and LF components, while there was an increase, although not significant, in the LF/HF ratio during nocturnal sleeping. In the resting period, there were significant recoveries in mean RRI, RMSSD, and the HF and LF components of HRV during nocturnal sleeping\(^47\).

Another study examined the effects of overtime and frequent business trips on 5-min HRV during rest in the morning in healthy male workers and found that the HF component was lower in the high vital exhaustion group\(^48\). Sasaki et al. reported increases in the LF/HF ratio during rest and the fatigue (drowsiness, dullness, and feeling of local physical abnormality) complaint rate with increase in working hours, but there were no differences among short (working hours: 53.1 h/wk), medium (working hours: 60.0 h/wk), and long (working hours: 67.1 h/wk) working hour groups\(^49\), and they did not find significant relationships between working hours and mean RRI or the LF/HF ratio during rest in engineers\(^50\).

The HF component during rest was lower in workers with symptoms such as dullness, fatigue, backache, diarrhea, sleep disorders, and irritation than in those without these symptoms and was negatively associated with the presence of any of these symptoms once a week or more frequently\(^51\). Mean HF and LF components during a 24-h shift and on the next two work-free days significantly differed between ambulance personnel with many health complaints and few health complaints\(^52\). The subjects with many health complaints showed lower HF and higher LF components with less circadian variation during both the work and the work-free days\(^52\).

Train driving

In train drivers, RMSSD decreased during driving when compared with that during sleep, while it increased a little during standing\(^53\).

Working time

Night-shift work

The within-individual effects of night-shift work on HRV have been examined. Two studies\(^54, 55\) compared 24-h HRV between day (working from 0800 to 1700 or from 0600 to 1400) and night (working from 2140 to 0840 or from 2200 to 0600) shifts. All selected HRV parameters in frequency-domain (TP, HF and LF components, and LF/HF ratio) during the awake, work, and sleep periods were not statistically different between shifts. The LF/HF ratio was lower in the sleeping period and higher in the waking and working periods of workers on both shifts\(^54, 55\), and the HF component was higher during the sleeping period and lower in the waking and working periods of workers on both shifts\(^54, 55\). Among emergency physicians, post-night shift (0700–1500) values for mean RRI, SDNN, and the HF component were significantly higher than both pre- (1500–2300) and mid-night shift (2300–0700) values\(^56\). The LF/HF ratio during post-night shift was significantly lower than the pre- and mid-night shift values\(^56\).

The LF/HF ratio and the HF component during rest in the evening following day work were significantly larger and smaller, respectively, in nurses working shifts compared to nurses who were not\(^57\). Shift workers displayed significantly decreased RRI during work and SDNN during sleep at night on the morning shift day, compared with those of the daytime workers\(^57\). One study reported that among male shift workers, who were employed at a copper-smelting plant, mean RRI, HF component, and LF/HF ratio during rest in the morning on the day shift or work-free days were not different from those of day workers\(^58\).

The HF and LF components during rest showed decreasing trends in accordance with increase in shift work duration\(^59\). In a longitudinal study, one year changes in HRV were measured in shift workers who started a new job\(^60\). The HF and LF components on the morning or day shift decreased after 1 yr, but those changes were not different from changes in day workers\(^60\).

24-h shift work

One study found differences in HRV between 24-h shift workdays and work-free days. The circadian rhythms of the LF/HF ratio and normalized HF component of 5-min RRIs were disturbed on a 24-h shift workday, while the rhythm was well preserved on the next work-free day\(^61\). Although the mean value of the LF/HF ratio and normalized HF component differed significantly between the waking and sleeping times on the work-free day, they did not differ on the workday\(^61\). In firefighters, the LF/HF ratio of 5-min RRIs during night duty was significantly higher in workers who had to wake up from 0500 to 0700 than in workers who had to wake up from 0315 to 0515\(^62\). In long-distance truck drivers, during a workday including long distance driving, the LF/HF ratio during 0000–1200 was significantly lower than during 1600–2400\(^63\).

Discussion

Physical and chemical work environment

Particulate matter

Particulate air pollution with PM\(_{2.5}\) is associated with several adverse health outcomes, particularly death and hospital admissions from cardiopulmonary disease\(^64–66\). Although the mechanisms responsible for the cardiac mor-
bidity and mortality associated with particulate air pollution have not been fully elucidated, adverse effects on HRV in response to occupational exposure to PM$_{2.5}$ have been demonstrated$^{16, 18}$. Welding fume, which has a rich content of ultrafine particles (diameter ≤ 0.1 µm) and transition metals, as an occupational source of PM$_{2.5}$ emerged as having an unfavorable influence on HRV18. However, some studies found the positive influences on HRV$^{17, 19, 20}$, indicating that the mechanisms of the effects of PM$_{2.5}$ on the autonomic system might depend on the characteristics of the content of PM$_{2.5}$, such as substance and diameter.

Carbon disulfide

CS$_2$ is reported to have a toxic effect on the cardiovascular and autonomic nervous systems$^{67, 68}$. Studies on the effects of occupational exposure to CS$_2$ on HRV$^{21, 22}$ found adverse changes in HRV. The changes last after the termination of the exposure22. These adverse effects on the autonomic nervous system can partly explain the fact that chronic exposure to CS$_2$ increases the mortality rate from myocardial infarction above that of the general population$^{69, 70}$.

Lead

Lead exerts toxic effects. Long-term exposure may cause complex neurobehavioral and neuroendocrine abnormalities. Lead inhibits neuronal conduction in the nervous systems, which use dopamine, noradrenaline, serotonin, or acetylcholine as neurotransmitters. In the peripheral nervous system, lead inhibits neurotransmission at the level of autonomic system synapses and neuro-muscle junction71. Studies of HRV$^{24, 25}$ show that the HF component or the LF/HF ratio was reduced by occupational exposure to lead, indicating that lead damages the vagal nerve more than other cardiac nerves, supporting the hypothesis that lead-induced neuronal alterations are mainly present in long neurons, which have more binding sites, than short ones71.

Manganese

Manganese is an essential element for humans. However, overexposure to manganese causes irreversible neuromotor damage as in Parkinson’s disease. Reduced nerve conduction velocities in manganese-exposed workers were reported in the motor fibers of the median and peroneal nerves72. HRV in manganese alloy workers was significantly different from healthy controls26, indicating that the autonomic nerve function might also be altered by manganese exposure. Occupational exposure to manganese may influence autonomic nerves and have neurotoxic effects.

Smoking

Smoking acutely increases sympathetic activities and increases plasma catecholamine levels$^{73, 74}$. This has been recognized as a major mechanism of CVD in smokers. An increase in the LF/HF ratio immediately after smoking in taxi drivers27 indicates that sympathomimetic and parasympatho-withdrawal responses to smoking may play additional roles in increasing cardiac risk and partly explain the high incidence and hospitalization rate of CVD among taxi drivers$^{75, 76}$.

Electromagnetic field

The possible influence of electromagnetic fields on the circulatory and nervous systems has been a subject of research for many years, as in theory the autonomic system may be affected by the electric impulses generated by an external EMF. Since the circulatory and nervous systems are composed of electrically excitable tissues, it is plausible that they can be stimulated by EMF. However, studies of HRV have not found clear effects of occupational exposure to EMF on the HF and LF components$^{28–30}$. This might be due to the level of exposure in the occupational settings, which did not exceed admissible values. Wilen et al.29 indicated that an increase in TP and the VLF component of exposed workers might be associated with increased parasympathetic activity due to an adaptation of the thermoregulatory system and cardiac modulation to long-term low-level thermal exposure in RF operators29.

Vibration

Prolonged vibration exposure can cause vibration-induced white finger, which is one of the most common types of hand-arm vibration syndrome found among operators of hand-held vibratory tools. The blanching attacks are induced by pathological vasospasm of the finger, usually following exposure of the whole body to cold conditions in winter77. Such enhanced vasospastic response to cold is considered to result from an exaggerated central sympathetic vasoconstrictor reflex and local changes in the digital vessels78. This explanation is supported by the increase seen in the LF/HF ratio during immersion of the hand of workers with white finger in cold water33. Workers with hand-arm vibration syndrome showed decreased HF and LF components during rest when compared with healthy workers31. In addition, SDNN and RMSSD decreased in workers with hand-arm vibration syndrome without vibration-induced white finger22. Hand-transmitted vibration may also cause persistent damage to nerves and blood vessels in the upper limbs or the higher centers of the autonomic nervous system.
Cold environment

One of the health hazards of cold exposure is hypertension\(^7\(^\)). Blood pressure is higher in winter than in summer because of the increase in peripheral resistance at lower environmental temperatures\(^8\(^\)), and this may be one of the mechanisms underlying the higher mortality from CVD in winter. Long-term occupational exposure to cold environment increases blood pressure in male workers working in cold areas more than once per day\(^7\(^\)). Bortkiewicz et al.\(^3\(^\)) also found higher blood pressure in workers with exposure to ambient temperatures varying from 0 to 10°C for 8 h/d than in workers with exposure to ambient temperatures between 10°C and 14°C for 8 h/d. However, the chronic effect of occupational exposure to a cold microclimate on HRV was not significant, indicating that HRV might not be a sensitive marker for capturing the adverse effects of exposure to a cold environment on the cardiovascular system.

Heat and organic solvents

There is a possibility that occupational exposure to heat and some organic solvents, such as n-hexane, xylene, and toluene, affect the cardiovascular system. It has been reported that the additional stimulus of a heated environment during exercise increased sympathetic activity during exercise\(^8\(^\)). Murata et al. found a decreased coefficient of variation for the high-frequency component (0.15–0.3 Hz) of HRV in workers exposed to n-hexane, xylene, and toluene\(^8\(^\)). These studies were not included in this review because either the participants were not workers or the dependent variables were not the indices of HRV recommended by the Task Force\(^5\(^\)). Parameters of HRV recommended by the Task Force\(^5\(^\)) might be able to detect adverse changes in the cardiovascular systems of workers with occupational exposure to heat and the organic solvents.

Psychosocial workload

Job strain

Work stress relates to the elevation of blood pressure and self-perceived psychological stress and is an independent risk factor of CVD. When subjects consisted of workers from different positions or working conditions, adverse effects on HRV associated with work strain were observed\(^3\(^,\)\(^7\(^\))\(^\)), while in a homogeneous group of healthy workers, HRV was not associated with work strain\(^3\(^,\)\(^8\(^\)–\(^4\(^0\(^\)\)))\(^\).

Employment

Low employment grade was associated with adverse changes in HRV\(^4\(^3\(^\))\(^\)). Part of this association is explained by behavioral factors such as smoking, and part by psychosocial factors. In the context of a working population, low job control predicts coronary incidence and may mediate the relationship between low employment grade and adverse changes in HRV.

Organizational injustice

The influence of justice at work on employee health has been gaining attention recently. It has been reported that there is an association between justice at work and employee health\(^8\(^\)). However, the pathways and mechanisms underlying this association are not clear. An increased risk of reduction in the HF component was reported for workers self-reporting low perceived justice\(^4\(^5\(^\))\(^\)), indicating that organizational injustice is a risk factor of adverse effects on the cardiovascular system.

White-collar office work for hypertensive

Hypertension is one of the risk factors of CVD. The LF/HF ratio during work of hypertensives was significantly higher than that of normotensive subjects\(^4\(^6\(^\))\(^\)), suggesting that hypertension enhances the response of HRV to workload and that workload contributes to the progression of CVD in hypertensives.

Fatigue

Excess fatigue has attracted a great deal of attention as one of the major occupational health problems, especially in Japan. Two studies clearly showed an association between cumulative or excess fatigue and adverse changes in HRV\(^4\(^7\(^,\)\(^6\(^3\(^\)\))\(^\)). When the fatigue complaint rate did not differ, the LF/HF ratio during rest also did not differ between workers with short, medium, and long working hours and relationships between working hours and mean RRI or the LF/HF ratio during rest were not statistically significant\(^5\(^0\(^\))\(^\)). Symptoms were associated with adverse changes in HRV\(^5\(^1\(^,\)\(^5\(^2\(^\)\))\(^\)). It has been assumed that exhaustion is related to autonomic nervous dysfunction in patient populations. Workers with excess fatigue or intense subjective symptoms might also show objective signs of sympathovagal imbalance.

Train driving

Train driving contains physical and mental workload components\(^5\(^3\(^\))\(^\)). Decreased RMSSD during train driving\(^5\(^3\(^\))\(^\) indicates that physical or mental workload during train driving may cause adverse effects on HRV.

Working time

Night shift work

Several studies have shown altered circadian rhythms of HRV in night shift workers\(^5\(^4\(^–\(^5\(^6\(^\)\))\(^\)). The circadian pattern of HRV and cardiac autonomic activity seem to be predominantly related to the level of physical activity or sleep (supine) and wakefulness (standing), and remains independent of the night-day cycle\(^5\(^4\(^,\)\(^5\(^5\(^\)\))\(^\)). The altered cir-
cadian rhythm of HRV during night shift work may last and cause adverse changes in HRV even on a day without a night shift37, 57). Furthermore, the longer the night shift work duration is, the smaller the HF and LF components are59, 60). These results may explain positive associations between night shift work and CVD84–86), and between the duration of night shift work and the risk of CVD87).

24-h shift work

Twenty-four-hour shift work can also disturb the circadian rhythm of HRV61–63) as the autonomic system associates with wake-sleep and activity-rest rhythms88). As shown for night shift workers, a disturbed circadian rhythm of HRV could increase CVD risk. Sato \textit{et al.}63) found that the LF/HF ratio was lower in the morning than at midnight in 24-h shift work drivers, suggesting that parasympathetic nervous system activities are more dominant than sympathetic nervous system activities in the morning after midnight work, and that this situation might cause drowsiness during driving in the morning.

Future directions

As CVD can be caused by a number of occupational factors, HRV has been examined in workers from a wide range of occupations. HRV is a useful tool for revealing adverse effects on the cardiovascular system in the occupational setting. Nevertheless, to get a clear and deeper understanding of the effects of work-related factors on HRV, it might be better to consider the following points in the future studies.

For short-term recordings, only four studies controlled or measured the breathing rhythm during the recording of RRI of resting workers. Since respiration potentially influences the HF component89), breathing rhythm should be measured or controlled when HRV is measured in a controlled circumstance. This would permit identification and exclusion of participants with breathing rhythms outside the HF range.

For long-term recordings, frequency analysis has been performed in 5-min segments, and mean HF and LF components were evaluated in most studies where continuous recording over several hours was performed on workdays or rest days. In frequency analysis of the total record of continuous recordings over several hours, the lower frequency components, i.e. VLF (0.0033–0.04 Hz) and ultralow frequency (ULF, < 0.0033 Hz) components can also be evaluated. These components have not been examined in previous studies concerning occupational health and they might become promising markers according to Bigger \textit{et al.}10) who demonstrated decreases in the VLF and ULF components as better predictors of all-cause mortality in post-infarction patients. However, it is noted that HRV at frequencies lower than $10^{-3.5}$ ($=3.16 \times 10^{-4}$ Hz) are strongly influenced by behavioral factors such as physical activity, sleep-wake cycle, and circadian and ultradian rhythms. Therefore, the ULF component should be examined controlling for behavioral factors. Another approach to adjust for the effects of behavioral factors is to change the frequency divisions of the Task Force5) and evaluate a “new” VLF (10$^{-3.5}$–0.04 Hz) component suggested by Aoyagi \textit{et al.}89).

Figure 1 depicts the representative power spectral densities of a healthy young man and an elderly man during waking with normal daily activities. Power for the young man at frequencies higher than $10^{-3.5}$ Hz is higher than that for the elderly man, which might be related to the deterioration of the cardiovascular system due to aging. This implies that the “new” VLF component might be sensitive to undesirable changes in the cardiovascular system. Also, the division of VLF and ULF components at 0.0033 Hz, as suggested by the Task Force5), is arbitrary.

Finally, the literature on the effects of work-related factors on HRV is predominantly based on cross-sectional studies. To deduce chronic effects on the autonomic system and the causal relationships between the hypothesized exposures and HRV, longitudinal research is highly recommended.

\textbf{Fig. 1.} Examples of power spectral density (PSD) of long-term heart rate variability calculated using a fast Fourier transform during waking with normal daily activity for a healthy young man and a healthy elderly man. Vertical dotted lines indicate boundary frequencies of the very low (VLF) and ultralow frequency (ULF) bands defined in the Task Force report5) or suggested by Aoyagi \textit{et al.}89).
References

Shift work modifies the circadian patterns of heart rate variability in nurses. Int J Cardiol 79, 231–6.

