Urinary 8-oxo-7, 8-dihydro-2’-deoxyguanosine and Biopyrrins Levels among Construction Workers with Asbestos Exposure History

Rie YOSHIDA1*, Yasutaka OGAWA1, Izuru SHIOJI2, Xiaozhong YU1, Eiji SHIBATA3, Ippei MORI1, Hitoshi KUBOTA1, Akiko KISHIDA4 and Naomi HISANAGA1

1 National Institute of Industrial Health, Kawasaki, Kanagawa, 6–21–1, Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan
2 Shino-Test Corporation, Sagamihara, Kanagawa, Japan
3 Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Aichi, Japan
4 Kitasato University, Sagamihara, Kanagawa, Japan

Received December 18, 2000 and accepted February 23, 2001

Abstract: It has been suggested that oxidative stress is associated with the cancers caused by asbestos. Since construction workers are sometimes exposed to low levels of asbestos, we investigated whether oxidative stress was elevated in construction workers who had been exposed to low levels of asbestos. The subjects were 48 Japanese construction workers. The defined asbestos-exposed group consisted of subjects who had the history of suspected exposure to asbestos and were diagnosed to have irregular opacities or pleural plaques. We measured the amount of 8-oxo-7, 8-dihydro-2’-deoxyguanosine (8-oxodG) and biopyrrins in the urine of the subjects. The results showed that 8-oxodG and biopyrrins levels in the defined asbestos-exposed group were higher, although they were not statistically significant, than those in the control group. In addition, the urinary 8-oxodG levels tended to correlate positively with the duration of suspected exposure to asbestos. These results suggest that even low-level asbestos exposure may induce oxidative stress and that the resulting’s the oxidative stress might be related to lung cancer in construction workers.

Key words: Asbestos, Construction workers, Oxidative stress, 8-oxo7, 8-dihydro-2’-deoxyguanosine, Biopyrrins

It has been suggested that oxidative stress is associated with cancers resulting from exposure to asbestos because asbestos induce oxidative DNA damage in both culture cells1–3) and rats4). It has also been demonstrated that 8-oxo-7, 8-dihydro-2’-deoxyguanosine (8-oxodG), one of the markers of oxidative DNA damage5), increased in the urine or blood samples of workers exposed to asbestos at asbestos plants6–10). Construction workers have a high incidence of exposure to asbestos from construction materials11). Although the average total asbestos fiber concentration in the lungs of construction workers (6 × 10⁶ fibers/g dry lung tissue)11) was shown to be lower than those of asbestos plants workers (7 × 10⁸ fibers/g dry lung tissue)11), it was considered to be a high enough level to cause an excess incidence of lung cancer11). Anttila et al.12) also reported that 69% of lung cancer patients with a history of occupational exposure to asbestos were construction workers.

Since construction workers are considered to be exposed to lower levels of asbestos compared to asbestos plant workers11), our research subjects, who are construction workers, are also suspected to have been exposed to lower levels of asbestos than those workers indicated in previous reports8–10). In this study, we investigated whether the level of oxidative stress was elevated in construction workers who...
had been exposed to low levels of asbestos.

The subjects were 48 male Japanese construction workers, age from 43 to 72 (mean 59.5). All subjects were interviewed by an experienced occupational health doctor concerning their occupational histories, drinking and smoking habits, medical history, and other lifestyle factors. The duration of suspected exposure to asbestos for each subject was evaluated based on these data. Another doctor who had a specialty in pneumoconiosis diagnosed irregular opacities and pleural plaques by using chest x-rays films. The defined asbestos-exposed group (Group A, n=7, mean age 60.1) consisted of subjects who were evaluated to have the history of suspected exposure to asbestos, and were diagnosed to have irregular opacities or pleural plaques. The rest of subjects were classified as the control group (Group C, n=41, mean age 59.4).

Urine was sampled from each subject in the morning and was frozen immediately after sampling. 8-OxodG was measured using anti-8-oxodG monoclonal antibody, N45.1 (Japan Institute for the Control of Aging, Fukuroi, Shizuoka, Japan). Urinary biopyrrins, which is the oxidative metabolite of the antioxidant bilirubin13) was selected as an indicator to estimate the level of systemic oxidative stress and measured using anti-bilirubin monoclonal antibody 24G7 (Shino-Test corporation, Sagamihara, Kanagawa, Japan).

Table 1 shows characteristics of Group A and C. All workers of Group A were smokers who smoked 26.7 cigarette/day. Sixty seven percent of them drunk alcohol three or more times a week. In Group C, 87.7% workers were smokers who smoked 23.3 cigarette/day and 72.3% of them drunk alcohol three or more times a week. There was no significant difference in age, the frequency of alcohol consumed, the number of smokers and the number of cigarette smoked/day between Groups A and C.

The urinary 8-oxodG level of Group A (8.0 ± 0.9 µg/g creatinine) was a little higher than that of Group C (6.4 ± 2.1 µg/g creatinine) (Fig. 1). The difference was near the border of confidence interval but was not statistically significant (p = 0.057). We also investigated the relationship between the duration of suspected exposure to asbestos and the urinary 8-oxodG levels of the Group A. The 8-oxodG levels of Group A tended to correlate positively with the duration of suspected exposure to asbestos (r=0.7, p=0.1) (Fig. 2). We further investigated whether the 8-oxodG levels were associated with age. There were no correlation between age and the urinary 8-oxodG levels of Group C (p=0.71). The urinary biopyrrins level of the Group A (2.3 ± 1.5 µmol/g creatinine) was slightly higher than that of the Group C (1.9 ± 1.1 µmol/g creatinine), but the difference was not statistically significant (p=0.35).

Although the results were not statistically significant, urinary 8-oxodG and biopyrrins levels of the Group A were higher than those of the Group C. In addition, urinary 8-oxodG levels of the Group A increased with the duration of suspected exposure to asbestos. Since the urinary 8-oxodG levels were not correlated with age, increased urinary 8-oxodG levels of Group A might depend on the suspected
exposure to asbestos. Considering that asbestos had induced oxidative stress in cells1–5), rats6), and asbestos plant workers who were exposed to high levels of asbestos8–10), our results suggest that exposure to even low levels of asbestos also increase oxidative stress level. Since 8-oxodG induces genetic mutation14), the increased oxidative stress induced by asbestos may be associated with lung cancer in construction workers. The measurement of urinary 8-oxodG might be a reliable supplemental way to assess the cancer risk of construction workers who have been exposed to asbestos in addition to routine chest x-ray diagnosis. Due to the limitation of the sample size in this study, further studies are needed to determine the validity of our recommendation.

References