Hepatitis B -Related Polyarteritis Nodosa Presenting Necrotizing Vasculitis in the Hepatobiliary System Successfully Treated with Lamivudine, Plasmapheresis and Glucocorticoid

Shigeyuki Takeshita¹, Hideki Nakamura¹, Atsushi Kawakami¹, Tetsuya Fukushima¹, Takashi Gotoh¹, Tatsuki Ichikawa¹, Akira Tsujino¹, Hiroaki Ida¹, Kan Toriyama², Tomayoshi Hayashi³ and Katsumi Eguchi¹

Abstract

A 64-year-old man was admitted for alithiasic cholecystitis. Necrotizing vasculitis was detected in a gallbladder obtained at the cholecystectomy. Slight elevation of transaminases, HBe antigens and hepatitis B-DNA (HBV-DNA) were detected in the patient. Intrahepatic necrotizing vasculitis was also detected in the liver biopsy specimen, and he also suffered from peripheral neuropathy of suddenly onset. Based on the diagnosis of hepatitis B-related polyarteritis nodosa, lamivudine was initially administered, followed by plasmapheresis and glucocorticoid steroid therapy. These treatments brought satisfactory improvement of polyarteritis nodosa without exacerbation of liver function.

Key words: Hepatitis B, polyarteritis nodosa, alithiasic cholecystitis, lamivudine, plasmapheresis, glucocorticoid therapy

(DOI: 10.2169/internalmedicine.45.1460)

Introduction

Various extrahepatic manifestations of chronic hepatitis B infection have been reported (1-3). Polyarteritis nodosa (PAN) is the most typical extrahepatic manifestation. However, current estimates of hepatitis B-related PAN are now less than 10% among all PAN patients (4, 5). We encountered a case of hepatitis B-related PAN, diagnosed during the course of alithiasic cholecystitis. Necrotizing vasculitis was observed in the biopsy specimen of the gallbladder and liver, and mononeuropathy multiplex was also complicated in the patient. The therapy of plasmapheresis and glucocorticoid with lamivudine exerted a significant effect without exacerbation of liver dysfunction.

Case Report

A 64-year-old man, who had been previously treated for type 2 diabetes visited our hospital in March 2004 because of fever, elevation of C-reactive protein (CRP) and hepatobiliary enzymes. Diagnosis of alithiasic cholecystitis was made by abdominal ultrasonography and computed tomography (CT), however, antibiotics were not effective. Thus, laparoscopic cholecystectomy was performed and necrotizing vasculitis in the gall bladder was discovered after a pathological examination of the specimen taken at cholecystectomy, on May 18th. Since HBe antigen (Ag) as well as hepatitis B-DNA (HBV-DNA) was found in his serum (Table 1), we performed a liver biopsy, in which necrotizing vasculitis with fibrinoid degeneration of medial size arteries was demonstrated (Fig. 1). Although the liver parenchyma

¹ The First Department of Internal Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, ² Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki and ³ Department of Pathology, Nagasaki University Hospital, Nagasaki

Received for publication June 13, 2005; Accepted for publication August 29, 2005

Reprint requests should be addressed to Hideki Nakamura, The First Department of Internal Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501
was positively stained with anti-HBc antibody (DakoCyto-
mation, Inc., Carpinteria, CA, USA) by the streptavidin-
biotin (SAB) method, the vasculitis lesions of the gall blad-
der and liver were not positively stained for HBc antigen
(Fig. 2). However, positive staining of complement 3 (C3)
and IgG was observed in the inflamed vessels of the ne-
crotizing lesion of both gallbladder and liver (Fig. 3) by
the use of rabbit anti-human C3 antibody (DakoCyto-
mation, Inc.) and MILAB ICC-kit IgG (MILAB, Arnhem, Nether-
lands) by the labeled streptavidin-biotin (LSAB) method.

On admission, the patient was febrile (37.5°C) and neu-
rologically, he exhibited muscle weakness of the left lower
leg. Numbness was also observed in both feet, more signifi-
cant in the left foot, which was confirmed as mononeuritis
multiplex by the nerve conduction velocity (NCV) study.

Laboratory findings on admission (Table 1) showed a he-
moglobin level of 10.4 g/dl, total leukocyte count of 8,800/
mm³, and platelet count of 37.3×10⁴/mm³. Urinalysis was
negative for both protein and occult blood. Blood chemistry
showed normal BUN, creatinine, lactate dehydrogenase
(LDH). There was a slight increase of serum transaminases
(aspartate aminotransferase; AST 35 IU/l, alanine
aminotransferase; ALT 41 IU/l) and γ-GTP (112 IU/l). Anti-
nuclear antibody was negative. Furthermore, double-stranded
anti-DNA antibody, anti-SS-A/SS-B antibody and myeloper-
oxidase anti-neutrophil cytoplasmic antibody (MPO-ANCA)
were negative although the proteinase 3 antineutrophil cyto-
plasmic antibody (PR-3 ANCA) was slightly elevated at 67
EU. His serum CRP level was elevated at 2.75 mg/dl. As for
HBV-associated markers, HBs antigens, HBe antigens, anti-
HBc antibody and anti-HBc antibody were positively
detected in the serum. Hepatitis B viremia was also found
(Table 1). At this time HBV-YMDD mutation was not de-
tected and HBV genotype was confirmed as type C. CT
scan of the paranasal sinus and lung showed no evidence of
Wegener’s granulomatosis.

Table 1. Laboratory Findings Including HBV Markers and
Viral Load.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>8800</td>
<td>7000</td>
<td>2500-9000</td>
<td>/µl</td>
</tr>
<tr>
<td>Hb</td>
<td>16.4</td>
<td>14.3</td>
<td>13.0-17.0</td>
<td>g/dl</td>
</tr>
<tr>
<td>Pt</td>
<td>37.3×10⁹</td>
<td>16.1×10⁹</td>
<td>14×10⁹-33×10⁹</td>
<td>/µl</td>
</tr>
<tr>
<td>Total protein</td>
<td>6.5</td>
<td>6.0</td>
<td>6.7-8.3</td>
<td>g/dl</td>
</tr>
<tr>
<td>AST</td>
<td>35</td>
<td>18</td>
<td>13.33</td>
<td>IU/l</td>
</tr>
<tr>
<td>ALT</td>
<td>41</td>
<td>37</td>
<td>6-42</td>
<td>IU/l</td>
</tr>
<tr>
<td>γ-GTP</td>
<td>112</td>
<td>58</td>
<td>10-47</td>
<td>IU/l</td>
</tr>
<tr>
<td>CRP</td>
<td>2.75</td>
<td>0.09</td>
<td>&lt;0.17</td>
<td>mg/dl</td>
</tr>
<tr>
<td>HBsAg</td>
<td>&gt; 2000</td>
<td>NT</td>
<td>&lt;1.0</td>
<td>COI</td>
</tr>
<tr>
<td>HBeAg</td>
<td>0.3</td>
<td>NT</td>
<td>&lt;5.0</td>
<td></td>
</tr>
<tr>
<td>HBeAb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HBV-DNA</td>
<td>7.8</td>
<td>4.5</td>
<td>&lt;2.7</td>
<td>LGE/ml</td>
</tr>
<tr>
<td>Immune complex</td>
<td>1.3</td>
<td>NT</td>
<td>≤2.9</td>
<td>µg/ml</td>
</tr>
<tr>
<td>MPO-ANCA</td>
<td>&lt;10</td>
<td>&lt;10</td>
<td>&lt;20</td>
<td>EU</td>
</tr>
<tr>
<td>PR-3-ANCA</td>
<td>67</td>
<td>&lt;10</td>
<td>&lt;10</td>
<td>EU</td>
</tr>
</tbody>
</table>

Note: NT, not tested; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; LGE, Log Geroime Equivalents; MPO-ANCA
myeloperoxidase anti-neutrophil cytoplasmic antibody; PR-3-ANCA; proteinase 3
anti-neutrophil cytoplasmic antibodies

Figure 1. Necrotizing vasculitis was detected in both gallbladder and liver. Specimens were ob-
tained from a liver biopsy and gall bladder sample taken during the cholecystectomy operation. In
both the gallbladder and liver, necrotizing vasculitis with fibrinoid necrosis was observed in the in-
flamed medium-sized artery. Infiltration of neutrophils and granuloma formation were also
observed. (Fig 1A and B). (HE stain, x100)
HBc antigen was not observed in the vasculitis lesion. Specimens obtained from the gallbladder and liver of the patient were immunostained with anti-HBc antibody. In the liver, positive staining was observed in the parenchyma (Fig 2B), however, there was no positive staining in the necrotizing lesion (Fig 2A). In the gallbladder, no positive staining was detected within the vasculitis lesion (Fig 2C). No positive staining was found in the negative control sections (Fig 2E-G). The positive control was the HBe antigen-positive patient with chronic hepatitis B (Fig 2D&H).

Since the diagnosis of hepatitis B-related PAN was made, we first administrated lamivudine on June 18. However, progression of peripheral neuropathy necessitated the addition of plasmapheresis (total 8 times during 3 weeks) glucocorticoid therapy including methylprednisolone pulse therapy (250 mg/day), followed by 30 mg of oral prednisolone, in accordance with insulin therapy for type 2 diabetes (Fig. 4). He was discharged on September 17 with a final prescription of 20 mg/day of oral prednisolone and lamivudine. As indicated in Fig. 4, these treatments brought improvement of neurological signs and inflammatory reactions without exacerbation of liver function. Hepatitis B viremia was also improved during the treatment (Table 1).

**Discussion**

Immunohistochemically, HBc antigen was not observed in the inflamed vasculitis lesions. Previous reports suggest that circulating immune complex, consisting of hepatitis B antigens and antibodies plays an important role in the pathogenesis of vasculitic lesions of hepatitis B-related PAN (5). However, Dienstag (6) reported that circulating immune complexes does not appear to contribute to the pathogenesis of hepatitis B-related extrahepatic disorders. The present case did not show the elevation of circulating immune complex. Therefore, in the hepatitis B-related PAN of our case, either the direct effect of IgG or complement activation may play an important role in the pathogenesis of vasculitis lesions without the evidence of an immune complex-mediated

![Figure 2](image2.png)

**Figure 2.** HBc antigen was not observed in the vasculitis lesion. Specimens obtained from the gallbladder and liver of the patient were immunostained with anti-HBc antibody. In the liver, positive staining was observed in the parenchyma (Fig 2B), however, there was no positive staining in the necrotizing lesion (Fig 2A). In the gallbladder, no positive staining was detected within the vasculitis lesion (Fig 2C). No positive staining was found in the negative control sections (Fig 2E-G). The positive control was the HBe antigen-positive patient with chronic hepatitis B (Fig 2D&H). NRS: normal rabbit serum (×100)

![Figure 3](image3.png)

**Figure 3.** IgG and complement deposition was detected in the necrotizing vasculitis lesion. The specimens obtained from the gallbladder and liver of the patient were immunostained with antibodies against IgG and complement 3 (C3). Positive staining of IgG and C3 was observed in the inflamed vasculitis lesion of the gallbladder (Fig3 A&C). In the liver, strong IgG (Fig 3B) and slight C3 deposition (Fig 3D) were observed in the lesion of the necrotizing vasculitis, respectively. No positive staining was observed in the negative control sections (Fig 3E&F). (×100)
mechanism. It is possible to speculate that antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC), triggered by HBV infection, might be involved in the pathologic process of the vascular damage in such a case.

Plasmapheresis is considered to be the pivotal therapy to improve hepatitis B-related PAN (7, 8). The apparent mechanism of plasmapheresis against hepatitis B-related PAN centers on the removal of viral components including circulating immune complex as well as blocking the replication and reactivation of HBV (9). In addition, some reports indicate that anti-viral agents such as interferon-α2b, lamivudine or a combination of these compounds are effective for HBV-associated PAN (10). Recently, Guillevin et al reported the efficacy of short-term corticosteroids followed by lamivudine and plasma exchanges for hepatitis B-related PAN (11). These observations strongly suggest the combination use of anti-inflammatory agents and anti-viral compounds for the treatment of hepatitis B-related PAN. In the present study, we successfully treated hepatitis B-related PAN with plasmapheresis and glucocorticoid by inhibiting HBV replication by lamivudine without exacerbation of liver dysfunction. Perhaps our treatment method will become an alternative in controlling the activity of hepatitis B-related PAN, especially in the case of HBe antigen-positive or high HBV viral load.

We thank Mr. Daniel Buckson for the critical reading and editing of our manuscript. Shigeyuki Takeshita and Hideki Nakamura contributed equally to this work.

References