The Efficacy of Short-Term Interferon-Beta Therapy for Type C Cirrhotic Patients with Genotype 2a and Low Virus Load

Yasuji Arase¹, Fumitaka Suzuki¹, Hitomi Sezaki¹, Yusuke Kawamura¹, Yoshiyuki Suzuki¹, Masahiro Kobayashi¹, Norio Akuta¹, Tetsuya Hosaka¹, Hiromi Yatsuji¹, Mariko Kobayashi², Satoshi Saitoh¹, Kenji Ikeda¹ and Hiromitsu Kumada¹

Abstract

Objective The aim of this study was to elucidate the efficacy of short-term interferon (IFN) therapy for type C cirrhotic patients with genotype 2a and low virus load.

Methods The present study was retrospective cohort study. Inclusion criteria were liver cirrhosis, hepatitis C virus (HCV) genotype 2a, the serum HCV RNA level of less than 100 KIU/mL, and IFN period of 6 or 8 weeks. Twenty-five consecutive patients who satisfied the above criteria were treated with IFN-beta daily at the dosage of 6 MU for 6 or 8 weeks. Independent factors that might have influenced sustained virologic response (SVR) were studied using multiple logistic regression analysis.

Results Background of clinical profiles were as follows: median (range) age=64 (53-76) years, male/female=13/12, and median (range) HCV-RNA=31 (8-90) KIU/mL. Out of 25, 14 patients (56.0%) had SVR by the intention-to-treat analysis. The SVR was significantly associated with serum HCV RNA level. Logistic analysis showed that SVR occurred when HCV RNA level was <50 KIU/mL (p=0.047). Based on the difference of the serum HCV RNA level, the SVR rate was 68.4% (13/19) in patients with a serum HCV RNA level of <50 KIU/mL and 16.7% (1/6) in patients with a serum HCV RNA level of ≥50 KIU/mL.

Conclusions The 6 or 8-week IFN-beta therapy is a possible selection of therapy for cirrhotic patients with HCV genotype 2a and a serum HCV RNA level of <50 KIU/mL.

Key words: liver cirrhosis, hepatitis C virus, genotype 2a, low virus load, interferon, sustained viral response

Introduction

Current interferon (IFN) therapy for patients with chronic hepatitis C viral infection has been directed at viral clearance. Recent studies have reported improvement of therapeutic efficacy when IFN is combined with ribavirin (1-8). However, IFN is expensive and has a number of serious side effects. Therefore, if the treatment period would become shorter, it could be preferable.

On the other hand, several predictive factors of sustained viral response (SVR) to IFN have been identified, and these include short duration of disease, young age, absence of liver cirrhosis, genotype 2a, low hepatitis C virus (HCV)-RNA levels, HCV and mutant type of nonstructural 5A region (9-15). Patients with liver cirrhosis (LC) have a high development of hepatocellular carcinoma (HCC) and progression to decompensated state. Thus, patients with a cirrhotic state should be treated for protection of progression of LC stage. In particular, LC patients with genotype 2a and low HCV-RNA levels might have the possibility of eradication of HCV RNA with a small dose or a short period of interferon (IFN). However, there is also controversy over how long the IFN therapy should be continued to eradicate HCV RNA in...
Table 1. Clinical Characteristics before Short-term Interferon Therapy in Type C Liver Cirrhosis with Genotype 2a and Low Virus Load

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>(n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years old)</td>
<td>64 (53-76)</td>
</tr>
<tr>
<td>Male/female</td>
<td>13/12</td>
</tr>
<tr>
<td>Period of IFN therapy (6w/8w)</td>
<td>19/6</td>
</tr>
<tr>
<td>Total dose of IFN (MU)</td>
<td>246 (123-336)</td>
</tr>
<tr>
<td>HCV load (KIU/mL)</td>
<td>31 (8-90)</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>83 (39-203)</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>74 (27-412)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>12.6 (9.7-16.3)</td>
</tr>
<tr>
<td>Platelet(10^9/mm³)</td>
<td>11.4 (8.0-17.0)</td>
</tr>
<tr>
<td>WBC(10^9/mm³)</td>
<td>3.8 (3.0-6.9)</td>
</tr>
</tbody>
</table>

Thus, in this study, we evaluated the efficacy of short-term interferon (IFN) therapy for type C cirrhotic patients with genotype 2a and a low virus load.

Materials and Methods

Patients

A total of 25 consecutive cirrhotic type C patients treated with IFN-beta for HCV RNA clearance at Toranomon Hospital in Tokyo, Japan between 2002 and 2006 were enrolled in this study. This study was a retrospective cohort study. Enrollment criteria were: repeated alanine aminotransferase (ALT) elevation of greater than the upper normal limits (ALT normal range: 12-50 IU/L) for more than six months; histological evidence of liver cirrhosis at the time of entry into the trial by the use of distinction equation between chronic hepatitis and liver cirrhosis in patients with hepatitis C virus infection (16); positive serum HCV RNA; serum HCV RNA level of less than 100 KIU/mL; genotype 2a. We excluded from the study all the patients: 1) with concurrent hepatitis B virus (HBV); 2) with a history of IFN therapy; 3) Leukocytes <3,000/mm³, platelets <80,000/mm³ and bilirubin >1.5 mg/mL before IFN therapy.

Twenty-five patients received IFN at a dose of 6 million units (MU) of natural IFN-beta (Toray Industries or Daiichi Pharmaceutical Co., Tokyo, Japan) daily for 6 or 8 weeks. In general, patients were treated with IFN for 6 weeks and six patients who were treated for 8 weeks were assigned by randomized controlled trial. We regarded sustained virologic response (SVR) to therapy as clearance of HCV RNA by amplicor method (17) for more than 6 months after cessation of therapy. Our study was approved by the institutional ethics review board of our hospital. The physician in charge explained the purpose and method of the clinical trial as well as the potential adverse reactions to each patient, who later gave his/her informed consent for participation.

Blood testing

Blood samples were obtained just before IFN therapy and stored at -80°C. Using these blood samples, HCV-RNA levels before IFN therapy were analyzed by quantitative PCR assay (Amplicor GT-HCV Monitor Version 2.0, Roche Molecular Systems, USA) (18).

On the other hand, serum HCV-RNA at 6 months after the termination of IFN therapy was analyzed by the qualitative PCR assay. The lower detection limit of the qualitative assay is 100 copies/mL. HCV genotype was examined by the PCR assay, using a mixture of primers for the six sub-
Table 2. Predictive Factors for SVR in Short-term Interferon Therapy in Type C Liver Cirrhosis with Genotype 2a and Low Virus Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Category</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV RNA (KIU/mL)</td>
<td><50 ➥ ≥50</td>
<td>1/0.09</td>
<td>0.01-0.97</td>
<td>.047</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>≥76 <76</td>
<td>1/0.46</td>
<td>0.18-1.17</td>
<td>.102</td>
</tr>
<tr>
<td>Age (years)</td>
<td><60 ≥60</td>
<td>1/0.22</td>
<td>0.04-1.42</td>
<td>.112</td>
</tr>
<tr>
<td>Platelet (10^5/mm^3)</td>
<td><10 ≥10</td>
<td>1/3.00</td>
<td>0.57-15.76</td>
<td>.306</td>
</tr>
<tr>
<td>WBC (10^3/mm^3)</td>
<td><4 ≥4</td>
<td>1/2.33</td>
<td>0.46-11.81</td>
<td>.367</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>1/0.71</td>
<td>0.14-3.58</td>
<td>.682</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td><100 ≥100</td>
<td>1/0.75</td>
<td>0.13-4.29</td>
<td>.746</td>
</tr>
<tr>
<td>Total dose of IFN (IU/L)</td>
<td><200 ≥200</td>
<td>1/1.29</td>
<td>0.23-7.05</td>
<td>.772</td>
</tr>
<tr>
<td>Period of IFN therapy (week)</td>
<td>6/8</td>
<td>1/1.19</td>
<td>0.20-6.99</td>
<td>.851</td>
</tr>
</tbody>
</table>

*p value calculated by logistic regression analysis.

Types known to exist in Japan, as reported previously (19).

Statistical analysis

Nonparametric procedures were employed for the analysis of background features of the patients with SVR and without SVR, including the Mann-Whitney U test. Independent factors that might have influenced SVR were studied using multiple logistic regression analysis, and the following variables were evaluated as prognostic factors: sex, age, HCV RNA level, liver histology, biochemical factors (AST (aspartate aminotransferase), ALT) before IFN therapy and methods of IFN administration. The SPSS software package (SPSS Inc., Chicago, IL) was used to perform statistical analysis. A p value of <0.05 was considered to indicate a significant difference.

Results

Patients’ characteristics

Table 1 shows the characteristics of the 25 patients who had performed IFN therapy. Clinical profiles were as follows: median (range) age=64 (53-76) years, male/female=13/12, and median (range) HCV-RNA=31 (8-90) KIU/mL. All the patients were categorized as Child-Pugh-Turcotte score class A. Of the 25 patients originally included in this study, in five patients the dose of the IFN therapy was reduced from 6 MU to 3 MU because of general fatigue and thrombocytopenia at the time of 1-3 weeks after the initiation of IFN. Thus, the total dose of IFN was 228.0±79.2 million units (MU). The median (range) leukocyte and platelet count in patients with dose reduction were 3.400 (3.100-4.800)/mm^3 and 95.000 (8.8-11.4)/mm^3, respectively, while those in patients without dose reduction were 4.600 (3.000-6.900)/mm^3 and 120.000 (80.000-120.000)/mm^3. Both leukocyte and platelet count in patients without dose reduction were higher than those in patients with dose reduction (leukocyte; p=0.013, platelet; p=0.011).

Efficacy of treatment

Out of twenty-five patients enrolled on present study, 14 patients (56.0%) had SVR by the intention-to-treat analysis.
The SVR was significantly associated with serum HCV RNA level. The patients with a HCV RNA level of <50 KIU/mL tend to have high SVR compared to those with higher than that in patients with HCV RNA level of ≥50 KIU/mL (Table 2). Based on the difference of serum HCV RNA level, the SVR rate was 68.4% (13/19) in patients with a serum HCV RNA level of <50 KIU/mL and 16.7% (1/6) in patients with a serum HCV RNA level of ≥50 KIU/mL.

Table 3 shows the differences in the clinical background between patients with SVR and those without SVR. The serum level of HCV RNA in patients with SVR was lower than that in patients without SVR.

Adverse events

Within one week after the initiation of treatment, flu-like symptoms appeared in all the patients. The leukocyte count was 4,320±1,370/mm³ and the platelet count was 119,000±23,000/mm³ before the initiation of IFN therapy, whereas the values were 2,670±830/mm³ and 71,000±17,000/mm³, respectively, two weeks after the initiation of the therapy. None of the patients withdrew from this treatment due to IFN-related side effects.

Discussion

The present study was limited by non-randomized controlled trial. Another limitation of the study was that the number of the patients was small. However, several findings from the present study have direct implications for the short-term IFN treatment of LC patients with genotype 2a and low virus load.

First, more than 50% of patients cleared HCV RNA. This result indicates that the 6- or 8-week regimen of IFN therapy was preferable to eradicate HCV RNA in LC patients with genotype 2a and low virus load. Second, the patients with HCV RNA level of <50 KIU/mL tend to have high SVR compared to those with higher than that in patients with HCV RNA level of ≥50 KIU/mL. On the treatment
period, the efficacy of the 6-week regimen of IFN therapy was almost the same as that of the 8-week regimen. Moreover, the efficacy of the total dose of IFN of <200 MU was not different from that by the total dose of \(\geq 200 \) MU. These results indicate that in about two-thirds of LC patients with a genotype 2a and serum HCV RNA level of <50 KIU/mL and low virus load, HCV was eradicated by the 6-week regimen or total dose of IFN of <200 MU.

Regarding the side effects of IFN, no patient withdrew the treatment due to IFN-related side effect. Okanoue et al (20) reported that side effects occurred when the daily IFN dose was increased. In the present study, five patients had to reduce the IFN dose due to IFN side effects. On the IFN therapy for LC patients, the physician in charge should check the clinical findings compared to the patients with chronic hepatitis C.

At present, the combined IFN and ribavirin therapy is a standard therapy for chronic hepatitis C patients with genotype 1b and a high load of HCV-RNA. However, prolonged combination therapy of IFN and ribavirin is associated with various side effects. If the total dose of IFN is decreased and the period of IFN therapy is short, it would be desirable from two points of cost and side effect. Fortunately, in patients with low HCV-RNA levels, HCV RNA tends to be eradicated with a small dose of IFN (21-24). The present study indicates that in patients with a low HCV-RNA, HCV RNA can be eradicated with a small dose of IFN.

Conclusion

The present study indicates that the 6 or 8-week of IFN therapy is a possible selection of therapy for liver cirrhotic type C patients with genotype 2a and low virus load.

Acknowledgement

The present work was supported in part by grants-in-aid from Okinaka Memorial Institute for Medical Research and Japanese Ministry of Health, Labour and Welfare.

References

23. Sato Y, Tokue H, Kawamura N, et al. Short-term interferon ther-