Augmented Mechanical Alternans after Premature Ventricular Contraction

Satoshi Kurisu, Ichiro Inoue and Takuji Kawagoe

Key words: mechanical alternans, heart failure

(Inter Med 49: 197-198, 2010)
(DOI: 10.2169/internalmedicine.49.2815)

A 66-year-old man was resuscitated from out-of-hospital cardiac arrest due to dilated cardiomyopathy. Echocardiography showed an end-diastolic diameter of 59 mm and ejection fraction of 35%. Eight days later, cardiac catheterization was performed. When the left ventricular pressure was recorded with a pig-tail catheter, mechanical alternans (1), which is a phenomenon of alternating strong and weak beats with a constant beat-to-beat interval, was found (Picture 1). The pressure gradient between strong and weak beats was 20 mmHg during sinus rhythm. This pressure gradient increased to 80 mmHg after premature ventricular contraction (PVC), and gradually decreased. Asterisks show weak beats.

A 66-year-old man was resuscitated from out-of-hospital cardiac arrest due to dilated cardiomyopathy. Echocardiography showed an end-diastolic diameter of 59 mm and ejection fraction of 35%. Eight days later, cardiac catheterization was performed. When the left ventricular pressure was recorded with a pig-tail catheter, mechanical alternans (1), which is a phenomenon of alternating strong and weak beats with a constant beat-to-beat interval, was found (Picture 1). The pressure gradient between strong and weak beats was 20 mmHg during sinus rhythm. This pressure gradient increased to 80 mmHg after premature ventricular contraction, and gradually decreased. He received an implantable cardioverter-defibrillator, and was discharged 16 days later. Experimental studies have demonstrated that mechanical alternans is associated with abnormal intracellular Ca$^{2+}$ cycling in cardiomyocytes (2). Clinicians should recognize that mechanical alternans, which often represents failing myocardium, is augmented after premature ventricular contraction.