Meta-analysis: Total Parenteral Nutrition Versus Total Enteral Nutrition in Predicted Severe Acute Pancreatitis

Fengming Yi, Liuqing Ge, Jie Zhao, Yuan Lei, Feng Zhou, Zhifen Chen, Youqing Zhu and Bing Xia

Abstract

Background Total parenteral nutrition (TPN) as a traditional mode of treatment in severe acute pancreatitis was still used widely in clinical work. In addition, enteral nutrition treatment methods have developed; early enteral nutrition has already been highlighted for severe acute pancreatitis, but the therapeutic risks versus benefits need to be studied.

Aims and Objective To compare total parenteral nutrition with total enteral nutrition (TEN) in patients with severe acute pancreatitis by performing a meta-analysis.

Materials and Methods Electronic databases including PubMed, EMBASE, Science Citation Index, were searched to find relevant randomized controlled trials. Two reviewers independently identified relevant trials evaluating the effect of total parenteral nutrition and early enteral nutrition. Outcome measures were the mortality, hospital length of stay, infectious complications, duration of nutrition, organ failure and surgical intervention.

Results Eight randomized controlled trials (RCTs) including 381 patients were identified. Meta-analysis demonstrated that TEN was significantly superior to TPN when considering mortality \(p=0.001, 95\% CI \ 0.37(0.21-0.68) \), infectious complications \(p=0.004, 95\% CI \ 0.46(0.27-0.78) \), organ failure \(p=0.02, 95\% CI \ 0.44(0.22-0.88) \) and surgical intervention \(p=0.003, 95\% CI \ 0.41(0.23-0.84) \). While no difference between TEN and TPN when considering the hospital length of stay \(p=0.22, 95\% CI \ -14.10(-36.48-8.26) \) and as for duration of nutrition \(p=0.72, 95\% CI \ -1.50(-9.56-6.56) \) there was not enough data to compare the differences.

Conclusion Total enteral nutritional support is associated with lower mortality, fewer infectious complications, decreased organ failure and surgical intervention rate compared to parenteral nutritional support.

Key words: severe acute pancreatitis, total enteral nutrition, total parenteral nutrition

(Intern Med 51: 523-530, 2012)
(DOI: 10.2169/internalmedicine.51.6685)

Introduction

Acute pancreatitis (AP) is an inflammatory disease occurring in the pancreas, nearly 80% of mild to moderate pancreatitis recover spontaneously. However, overall 15%-20% patients progress to severe acute pancreatitis (SAP), which has a high risk of mortality (1, 2). The traditional treatment of AP are as follows: fasting, somatostatin or analogues to inhibit the activity of pancreaticin, prophylaxis antibiotics and sufficient intravenous fluids (3). Nutritional support of SAP is an essential part of the disease management (2, 4). Patients with acute pancreatitis are either treated with bowel rest or treated with parenteral nutrition to allow the pancreas to “rest” until the pancreatin return to normal (5). The traditional parenteral nutrition (PN) without enteral nutrition (EN) is used because food intake would stimulate pancreaticin secretion which may aggravate pancreatic inflammation. However, parenteral nutrition would bring about many complications, such as vasculitis or accompany septemia (6).
Thus enteral nutrition has already been highlighted for its superior advantage to parenteral nutrition. Enteral nutrition is associated with fewer septic complications, reduced surgical procedures and reduced length of hospital stay (7). It helps maintain the gut barrier, with consequent decreased bacterial translocation, which is in turn a key factor in limiting the complications in SAP (8). The most common technique for nasoenteral intubation is blind passage, as it does not require the use of sophisticated or expensive medical equipment. Unfortunately, blind placement too frequently results in trauma and is a source of significant morbidity and mortality. It is apparent that altered mental status, a preexisting endotracheal tube, and critical illness place a patient in a higher risk group for malposition and complications (9). Parenteral nutrition is still used widely in clinical work.

As a result of the advantages and disadvantages of the enteral nutrition. Numerous randomized controlled trials (RCTs) has been undertaken to compare the two methods of nutrition but the results of RCTs are varied (4, 10-16). The aim of this study was to integrate the latest RCTs to further compare the efficiency of enteral nutrition and parenteral nutrition.

Materials and Methods

Data identification

We searched PubMed, EMBASE, Science Citation Index database from inception to September 2011 using the terms “enteral nutrition”, “pancreatitis” and their analogues. Potentially relevant studies and the reference lists from the identified reports were searched by hand to find relevant trials.

The selection criteria

Studies that were included, fulfilled the following criteria and applied design: (i) RCT fully reported with detailed information available; (ii) population: patients with predicted severe acute pancreatitis; (iii) intervention: total enteral or parenteral nutrition; (iv) outcome measures: primary outcome is the mortality, hospital length of stay (LOS), infectious complications, organ failure and need for surgical intervention.

Quality assessment and statistical analysis

The quality of included trials was assessed by means of Jadad score (17). The reported methodology quality was independently evaluated by two of the reviewers (Yi Fengming and Ge Liuqing). Trials with a low risk of bias were the ones fulfilling the adequacy of three components: generation of the allocation sequence, allocation concealment and binding. Trials with a moderate risk of bias were the ones where one or more of these three criteria partly met, while trials were considered to carry a high risk of bias if only one or more criteria not met. Any disagreement was resolved by discussion between the two reviewers. As shown in Table 1, Jadad scores of RCTs included 5 RCTs with a score of 3, and 3 RCTs with a score of 2.

Two reviewers (Yi Fengming and Ge Liuqing) retrieved data and entered it into Review Manager (Version 4.2 for Windows, Cochrane Collaboration, Oxford, UK) independently. The differences between the total parenteral nutrition group and total enteral nutrition group were expressed as the risk ratio (RR) or mean difference with its 95% confidence interval (CI). Statistical heterogeneity among RCTs was assessed with the I² Statistics (18). I² is the proportion of total variation contributed by between-study variability. In the presence of statistical heterogeneity, a random-effect model was used. In the absence of statistical heterogeneity, the fixed-effect model was used.

Results

Totally 552 trials were retrieved; and the process of selecting relevant trials was described in Fig. 1. In the 552 i-
Initially potentially relevant studies, 517 were not randomized controlled trials, 27 were RCTs related with moderate AP or mixed nutrition. Finally, 8 RCTs were included (4, 10-16). The general information of the trials is shown in Table 2.

Meta-analysis

In total 381 patients were included in the eight trials which compared TEN with TPN in the therapy of severe acute pancreatitis. The general outcome from randomized studies evaluating TEN versus TPN in severe acute pancreatitis is shown in Table 3. Altogether 184 (48.29%) of the patients with severe acute pancreatitis use TEN, others use TPN. Clinically important outcome parameters of significance were evaluated (mortality, hospital LOS, infectious complications, organ failure and need for surgical intervention).

The results of the meta-analysis are demonstrated in Table 4. No statistical heterogeneity within this group of clinical trials except for the subgroup of infectious complications. Forest plot of meta-analyses of the results caused by TEN or TPN demonstrated that TEN was significantly superior to TPN when considering mortality \([p=0.001, 95\%\text{CI} 0.37(0.21-0.68)] \), infectious complications \([p=0.004, 95\%\text{CI} 0.46(0.27-0.78)] \), organ failure \([p=0.02, 95\%\text{CI} 0.44(0.22-0.88)] \) and surgical intervention \([p=0.003, 95\%\text{CI} 0.41(0.23-0.74)] \). While no difference between TEN and TPN when considering the hospital length of stay \([p=0.22, 95\%\text{CI} -14.10(-36.48-8.26)] \) and as for duration of nutrition \([p=0.72, 95\%\text{CI} -1.50(-9.56-6.56)] \) there was not enough data to compare the differences. (Fig. 2-7, Table 4).

Discussion

According to the summary of the clinical randomized trials, total enteral nutrition was superior to total parenteral nutrition. The lack of difference between hospital LOS and duration of nutrition was because the number of randomized trials recruited was low (n=1 and n=1 respectively).

Severe acute pancreatitis remains a significant clinical challenge. It is associated with a mortality rate of 10-40% (19). The main two etiological factors are gallstones and alcohol abuse (20). The clinical course of an attack of AP varies from a short period of hospitalization with supportive care to prolonged hospitalization and admittance to an intensive care unit (ICU) because of the development of systemic inflammatory response syndrome (SIRS), multiorgan failure (MOF), and septic complications (21). Overall, about 15% to 20% of patients progress to SAP. For these patients, the mortality rate is 10%-40% (19). The length of hospital stay is approximately 1 month (22). Multiorgan failure complicates the course of disease in 16-33% of cases, and infection develops in 30-50% (23, 24) and patients had a high rate of surgical intervention when confronting severe acute pancreatitis (24). Thus we selected mortality, hospital
Table 2. Demographic Data of the Studies Included

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Country</th>
<th>Patients (TEN/TPN)</th>
<th>Criteria of the study</th>
<th>Definitions of infectious complications</th>
<th>Definitions of organ failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gupta et al4</td>
<td>2003</td>
<td>UK</td>
<td>8/9</td>
<td>APACHE II score ≥ 6)</td>
<td>Defined by the Atlanta criteria</td>
<td>Defined by the Atlanta criteria</td>
</tr>
<tr>
<td>Louie et al10</td>
<td>2005</td>
<td>Canada</td>
<td>10/18</td>
<td>Ranson’s score ≥ 3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Petrov et al11</td>
<td>2006</td>
<td>Russia</td>
<td>35/34</td>
<td>APACHE II score ≥ 8 and/or CRP ≥ 150mg/L</td>
<td>Pancreatic infectious complications, i.e. infected pancreatic necrosis and pancreatic abscess which were based on microbiological examination</td>
<td>The Marshall score was used to assess organ failure</td>
</tr>
<tr>
<td>Eckerwall et al12</td>
<td>2006</td>
<td>Sweden</td>
<td>24/26</td>
<td>APACHE II score ≥ 8 and/or CRP ≥ 150mg/L and/or Peripancreatic liquid shown on CT</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Casas et al13</td>
<td>2007</td>
<td>Spain</td>
<td>11/11</td>
<td>APACHE II score ≥ 8 and or CRP ≥ 150mg/L and or D or E grade shown on CT</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Kalfarentzos et al14</td>
<td>1997</td>
<td>Greece</td>
<td>18/20</td>
<td>APACHE II score ≥ 8 and or CRP ≥ 120mg/L and or D or E grade shown on CT</td>
<td>Blood culture positive sepsis, pneumonia and/or adult respiratory distress syndrome, urinary infections, and infected necrosis or intra-abdominal abscess were recorded as infectious complications</td>
<td>N/A</td>
</tr>
<tr>
<td>Doley et al15</td>
<td>2009</td>
<td>India</td>
<td>25/25</td>
<td>Severe acute pancreatitis was defined using the Atlanta criteria</td>
<td>Culture of FNA, blood, operative specimens or drain fluid</td>
<td>N/A</td>
</tr>
<tr>
<td>Wu et al16</td>
<td>2010</td>
<td>China</td>
<td>53/54</td>
<td>Those individuals with pancreatic necrosis, determined by dynamic Spiral CT and confirmed by CRP level (greater than 19.5 mg/dL, 48 hours after the onset of the disease)</td>
<td>Patients with suspected infection underwent FNA. If FNA was negative and sepsis was still suspected, FNA was repeated after 72 hours</td>
<td>N/A</td>
</tr>
</tbody>
</table>

APACHE indicates Acute Physiology And Chronic Health Evaluation, CT indicates computed tomography, CRP indicates C-reactive protein.

Table 3. General Outcome from the Randomized Studies Evaluating TEN vs TPN in Severe Acute Pancreatitis

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortality</th>
<th>Hospital LOS</th>
<th>Infectious complications</th>
<th>Duration Nutrition</th>
<th>Organ Failure</th>
<th>Surgical intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gupta et al4</td>
<td>0/8</td>
<td>0/9</td>
<td>7(4-14)</td>
<td>10(7-26)</td>
<td>1/8</td>
<td>2/9</td>
</tr>
<tr>
<td>Louie et al10</td>
<td>0/10</td>
<td>3/18</td>
<td>26.2 ± 17.4</td>
<td>40.3 ± 42.4</td>
<td>1/10</td>
<td>5/18</td>
</tr>
<tr>
<td>Petrov et al11</td>
<td>2/35</td>
<td>12/34</td>
<td>N/A</td>
<td>N/A</td>
<td>11/35</td>
<td>27/34</td>
</tr>
<tr>
<td>Eckerwall et al12</td>
<td>1/24</td>
<td>2/26</td>
<td>N/A</td>
<td>N/A</td>
<td>1/24</td>
<td>7/26</td>
</tr>
<tr>
<td>Casas et al13</td>
<td>0/11</td>
<td>2/11</td>
<td>30.2</td>
<td>30.7</td>
<td>1/11</td>
<td>5/11</td>
</tr>
<tr>
<td>Kalfarentzos et al14</td>
<td>1/18</td>
<td>2/20</td>
<td>40(25-83)</td>
<td>39(22-73)</td>
<td>5/18</td>
<td>10/20</td>
</tr>
<tr>
<td>Wu et al16</td>
<td>6/53</td>
<td>23/54</td>
<td>N/A</td>
<td>N/A</td>
<td>12/53</td>
<td>39/54</td>
</tr>
</tbody>
</table>

LOS indicates length of stay

LOS, infectious complications, organ failure and the need for surgical intervention for clinical outcome parameters.

The concept of “pancreatic rest” assumes that pancreatic rest promotes healing, decreases pain, and reduces secretion and leakage of pancreatic juices in pancreas parenchyma and peripancreatic tissue (25, 26). The traditional therapy...
Table 4. Results of the Meta-analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of the patients included</th>
<th>RR or WMD (95% Confidence interval)</th>
<th>p value</th>
<th>Heterogeneity, I² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEN</td>
<td>TPN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>184</td>
<td>197</td>
<td>0.37(0.21-0.68)</td>
<td>0.37</td>
</tr>
<tr>
<td>Duration nutrition</td>
<td>10</td>
<td>18</td>
<td>-1.50(-9.56-6.56)</td>
<td>N/A</td>
</tr>
<tr>
<td>Infectious complications</td>
<td>184</td>
<td>197</td>
<td>0.46(0.27-0.78)</td>
<td>0.008</td>
</tr>
<tr>
<td>Hospital LOS</td>
<td>10</td>
<td>18</td>
<td>-14.10(-36.48-8.26)</td>
<td>N/A</td>
</tr>
<tr>
<td>Organ failure</td>
<td>141</td>
<td>152</td>
<td>0.44(0.22-0.88)</td>
<td>0.08</td>
</tr>
<tr>
<td>Surgical intervention</td>
<td>148</td>
<td>150</td>
<td>0.41(0.23-0.74)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; EN, enteral nutrition; PN, parenteral nutrition; RR, relative risk.

Figure 2. Forest plot for mortality. CI: confidence interval, EN: enteral nutrition, PN: parenteral nutrition, RR: relative risk

Figure 3. Forest plot for length of hospital stay. CI: confidence interval, EN: enteral nutrition, PN: parenteral nutrition, RR: relative risk

method for SAP are as follows: fasting, somatostatin or analogues to inhibit the activity of pancreatic, prophylaxis antibiotics and sufficient intravenous fluids (3). Total parenteral nutritional support has long been the standard source of exogenous nutrients for these patients, however this is costly and associated with many disadvantages, including dysfunction of the intestinal mucosal barrier, which, in turn, promotes sepsis of intestinal origin (27, 28). While these concepts should now be replaced by the principle that pancreatic stimulation should be maintained and that the stress response should be contained to reduce the likelihood of multiorgan failure, nosocomial infections and mortality (29).

To compare the efficacy of TEN and TPN in severe acute pancreatitis therapy, many randomized clinical trials have already been undertaken to evaluate the different outcomes (4, 8-15). The present meta-analysis, by summarizing all the available data from published RCTs to obtain an overall treatment effect and estimate the relationship between clinical parameters and the different methods of therapy. Forest plot of meta-analyses of the effects of TEN or TPN demonstrated that TEN was significantly superior to TPN when considering mortality [p=0.001, 95%CI 0.37(0.21-0.68)], infectious complications [p=0.004, 95%CI 0.46(0.27-0.78)], organ failure [p=0.02, 95%CI 0.44(0.22-0.88)] and surgical intervention [p=0.003, 95%CI 0.41(0.23-0.74)]. While there was no difference between TEN and TPN when considering the hospital length of stay [p=0.22, 95%CI -14.10(-36.48-8.26)] and as for duration of nutrition [p=0.72,
95%CI -1.50(-9.56-6.56)] there was not enough data to compare the difference. Which indicated that TEN is superior to TPN when considering the clinical outcomes studied.

As the recruited RCTs have different evaluation standards for the two methods of therapy, we eliminated some parameters. Meanwhile, some biochemical parameters (such as C-reactive protein, cytokine) need to be compared, which may predict the prognosis of the disease. The statistics methods included in the RCTs vary (such as duration nutrition time), which caused the loss of many data in the evaluation. The heterogeneity of the infectious complication is significant, and it may reduce the confidence of this result. Despite the limitations, most of the trials had excellent methodological quality and the pooled number of patients from the eight studies was 381 with reduced type II error.

In conclusion, total enteral nutritional support is associated with lower mortality, fewer infectious complications, a decrease organ failure and surgical intervention rate comparison.

Figure 4. Forest plot for infectious complications. CI: confidence interval, EN: enteral nutrition, PN: parenteral nutrition, RR: relative risk

Figure 5. Forest plot for duration of nutrition. CI: confidence interval, EN: enteral nutrition, PN: parenteral nutrition, RR: relative risk

Figure 6. Forest plot for organ failure. CI: confidence interval, EN: enteral nutrition, PN: parenteral nutrition, RR: relative risk
pared to parenteral nutritional support.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

We are indebted to the authors of primary studies.

References

