Clinical and Serial MRI Findings of a Sialidosis Type I Patient with a Novel Missense Mutation in the NEU1 Gene

Yoshiki Sekijima1,2, Katsuya Nakamura1, Dai Kishida1, Aya Narita3, Kaori Adachi4, Kosaku Ohno1, Eiji Nanba4 and Shu-ichi Ikeda1

Abstract

The case of a Japanese sialidosis type I patient with a novel NEU1 gene mutation is described. The patient developed an unsteady gait at age 14 and was referred to our hospital at age 16. On admission, subnormal intelligence, dysarthria, myoclonus, intentional tremors, limb and gait ataxia, hyperreflexia and macular cherry-red spots were observed. An enzymological analysis revealed a primary deficiency of neuraminidase. An NEU1 gene analysis identified two heterozygous missense mutations: p.P80L and p.D135N. The p.D135N mutation is a novel mutation that is considered to be associated with the mild clinical phenotype of sialidosis. Serial brain MRI showed diffuse brain atrophy progressing rapidly over the 41-month observation period.

Key words: sialidosis, neuraminidase, ataxia, cherry-red spot, myoclonus, magnetic resonance imaging

Introduction

Sialidosis (MIM# 256550) is an autosomal recessive lysosomal storage disease (1) caused by mutations in the NEU1 gene encoding the enzyme lysosomal sialidase (neuraminidase, EC 3.2.1.18) (2-4), which leads to decreased enzymatic activity and accumulation of sialyloligosaccharides in tissues. Sialidosis is divided into two main clinical variants with different ages of onset and severity. Sialidosis type I, also known as “cherry-red spot myoclonus syndrome,” is a relatively mild form of the disease with a late onset. Patients usually develop gait abnormalities, progressive impaired vision, bilateral macular cherry-red spots, myoclonus, ataxia and seizures in the second or third decade of life (1, 5-7). Sialidosis type II is the early-onset form and is associated with macular cherry-red spots, the Hurler-like phenotype, dysostosis multiplex, short stature, developmental delays, mental retardation and hepatosple-nomegaly (1, 8, 9). The age of onset and severity of the clinical manifestations are correlated with NEU1 mutations (10, 11) and the level of residual neuraminidase activity (10, 12, 13), indicating the existence of considerable genotype-phenotype correlation in this disease. To date, more than 40 mutations within the NEU1 gene have been identified in patients with sialidosis type I or type II (2, 3, 10-24).

We herein report the clinicopathological, neuroradiological, enzymological and molecular biological findings of a Japanese sialidosis type I patient with a novel missense mutation in the NEU1 gene.

Case Report

The patient, a 17-year-old Japanese young man, was the second child of non-consanguineous healthy parents and had a healthy sibling. He was born at term after a normal pregnancy with a birth weight of 3,550 g (Apgar scores: 9 at 1

1Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan, 2Division of Clinical and Molecular Genetics, Shinshu University Hospital, Japan, 3Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Japan and 4Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Japan

Received for publication September 2, 2012; Accepted for publication October 2, 2012

Correspondence to Dr. Yoshiki Sekijima, sekijima@shinshu-u.ac.jp
On brain magnetic resonance imaging (MRI) (Fig. 1A). The time, mild enlargement of the lateral ventricles was detected having familial paroxysmal kinesigenic dyskinesia. At that was admitted to a local hospital where he was suspected of and frequent falls precipitated by sudden movements. He showed normal development up to the age of 14 when he noticed an unsteady gait and was admitted to another local hospital. On admission, dysarthria, action myoclonus, intentional tremors, cerebellar ataxia and hyperreflexia were observed. His intelligence was assessed using the Wechsler Adult Intelligence Scale, 3rd edition (WAIS-III), which revealed the following results: Full Scale IQ: 86, Verbal IQ: 97, Performance IQ: 76, Verbal Comprehension Index: 97, Perceptual Organization Index: 79, Working Memory Index: 91 and Processing Speed Index: 66. Brain MRI showed mild diffuse brain atrophy, including the cerebral hemispheres, cerebellum and brainstem (Fig. 1B). Clonazepam reduced the myoclonus; however, the patient’s unsteady gait gradually deteriorated. He was suspected of having hereditary spinocerebellar ataxia and referred to our hospital at the age of 16 years.

On admission, the findings of a general examination of the patient were unremarkable. He was fully conscious, although his intelligence was subnormal (Full Scale IQ: 80, Verbal IQ: 97, Performance IQ: 64, Verbal Comprehension Index: 109, Perceptual Organization Index: 70, Working Memory Index: 69 and Processing Speed Index: 63 on WAIS-III). He had slurred and scanning speech; however, there were no abnormal findings in the cranial nerves. The muscles in the extremities were generally hypotonic, although their strength was normal and without atrophy. Intention tremors, action myoclonus and limb and gait ataxia were present. The tendon reflexes were increased without laterality. Babinski and Chaddock signs were negative on both sides. An ophthalmological examination demonstrated bilateral macular cherry-red spots (Fig. 2), although the patient’s visual acuity and visual field were both normal.

The findings of routine blood examinations, cerebrospinal fluid, chest roentgenography, electrocardiography, echocardiography, electroencephalography and nerve conduction studies were normal. The somatosensory evoked potential (SEP) evoked by right median nerve stimulation showed a giant cortical response. The visual evoked potential (VEP) showed no response following pattern-reversal visual stimulation in both eyes. Brain MRI revealed moderate diffuse brain atrophy (Fig. 1C), which was more evident in comparison with that observed on the patient’s previous MRIs (Fig. 1A, B). MRI of the spinal cord was normal. N-Isopropyl-(iodine-123) p-iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT) showed slightly decreased uptake in the right occipital and bilateral frontotemporal lobes. An electron microscopic study of a rectal mucosa biopsy showed numerous lamellar storage bodies in the ganglion cells of Meissner’s plexus (Fig. 3).

The skin fibroblast neuraminidase activity was significantly decreased (0 nmol/h/mg protein) and other lysosomal enzyme activities, including those of α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, β-hexosaminidase, β-hexosaminidase A, α-mannosidase, α-

Figure 1. Serial brain MRI of the patient (FLAIR image, axial view). A (top row), B (middle row) and C (bottom row) show MRI findings obtained at 14 years and five months, 16 years and one month and 17 years and 10 months of age. Diffuse brain atrophy became more evident with age. Brain atrophy was more obvious in the inferior parts of the temporal lobe, cerebellum and brainstem region.
fucosidase, β-glucuronidase and arylsulfatase A, were normal, which was compatible with a diagnosis of sialidosis (Table 1).

As the clinical findings and results of an enzymological analysis of the patient were suggestive of sialidosis type I, a genetic analysis of this disorder was performed with informed consent. DNA was extracted from peripheral leukocytes obtained from the patient according to the standard protocol. All 6 exons and the flanking intronic sequences of the NEU1 gene were amplified using polymerase chain reaction (PCR). The primer sequences and PCR conditions are summarized in Table 2. A direct sequence analysis of the PCR-amplified DNA identified two heterozygous missense mutations, c.239C>T and c.403G>A (Fig. 4), which resulted in amino acid alterations of p.P80L and p.D135N, respectively. Although the NEU1 genes of the parents were not analyzed, the results suggested that the patient was compound heterozygous for p.P80L and p.D135N. The c.239C>T (p.P80L) mutation has been reported previously in a Japanese sialidosis type II patient (12). On the other hand, the c.403G>A (p.D135N) mutation has not been previously described (HGMD Professional 2011.3, Human Gene Mutation Database, Biobase, Beverly, MA, USA and SNPs reported in the database (dbSNP) of the National Center for Biotechnology information (NCBI) (http://www.ncbi.nlm.nih.gov/SNP/)). The possible impact of a novel p.D135N mutation on the structure and function of neuraminidase was assessed using a bioinformatics tool, Polymorphism Phenotyping-2 (PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/) (25), and was predicted to most likely be damaging (score: 0.991; sensitivity: 0.45, specificity: 0.97).

Discussion

Lysosomal neuraminidase requires carboxypeptidase protective protein/cathepsin A (PPCA, EC 3.4.16.1) for intracellular transport and lysosomal activation (26). Human lysosomal neuraminidase is deficient in two genetic disorders: sialidosis (MIM# 256550), caused by a mutation in the NEU1 gene (1-4), and galactosidosis (MIM# 256540), in

Figure 2. Color fundus photographs of the right (A) and left (B) eyes demonstrating the classic appearance of a cherry-red spot in the maculae.

Figure 3. An electron microscopic study of a rectal mucosa biopsy. (A) Rectal ganglion cells (N) of Meissner's plexus contained many small electron-dense inclusions. The glia cells (G) had a normal appearance. Bar = 5 μm. (B) A high-power view of the rectangle in A. Electron-dense inclusions were composed of osmiophilic lamellar structures lined by a unit membrane. Bar = 0.5 μm.
Ported in a Japanese patient with severe congenital sialidosis analysis of the NEU1 β-galactosidase activity. In addition, a molecular genetic study of the first FRIP motif that is located at the N-terminus of the first type II (12). The P80 residue is situated in a conserved region, thus confirming the diagnosis of sialidosis.

The c.239C>T (p.P80L) mutation has been previously reported in a Japanese patient with severe congenital sialidosis type II (12). An enzymological analysis of our patient revealed a primary neuraminidase deficit with intact β-galactosidase activity. In addition, a molecular genetic analysis of the NEU1 gene revealed that this patient was compound heterozygous for the p.P80L and p.D135N mutations, thus confirming the diagnosis of sialidosis.

Diffuse brain atrophy is commonly observed in the advanced stage of sialidosis type I; however, the results of neuroradiological imaging can be normal on the first examination in affected patients (19, 20, 27-29). There have been very few studies regarding long-term changes in the findings of neuroimaging (20, 29), and it is largely unknown how rapidly brain atrophy progresses in patients with sialidosis type I. Chen et al. (19) reported the results of a long-term follow-up study of sialidosis type I siblings homozygous for the p.S182G missense mutation. The ages at onset in these patients were 14 and 17 years. The brain MRI findings of the younger brother remained normal even 18 years after onset, while those of the older sister showed mild cerebellar atrophy 11 years after onset. Palmeri et al. (29) reported the case of a 40-year-old woman who developed sialidosis type I at 17 years of age. A brain computed tomography (CT) scan of the patient performed at 21 years of age showed slight enlargement of the fourth ventricle and cisterna ambiens, whereas severe atrophy of the cerebellum, pontine region, cerebral hemispheres and corpus callosum were observed on MRI at the age of 40. Pathologically, cytoplasmic accumulation of sialyloligosaccharides has been observed in many neurons in the central nervous systems of sialidosis

<table>
<thead>
<tr>
<th>Lysosomal enzyme</th>
<th>Present patient* (nmol/h/mg protein)</th>
<th>Normal control** (n=1)</th>
<th>Normal controls** (n=25, mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuraminidase</td>
<td>0.0</td>
<td>176.1</td>
<td>25.0 ± 17.0</td>
</tr>
<tr>
<td>α-galactosidase</td>
<td>66.4</td>
<td>143.9</td>
<td>29.6 ± 17.6</td>
</tr>
<tr>
<td>β-galactosidase</td>
<td>780.8</td>
<td>1,333.6</td>
<td>401 ± 184.8</td>
</tr>
<tr>
<td>α-glucosidase</td>
<td>118.6</td>
<td>264.1</td>
<td>50.6 ± 32.0</td>
</tr>
<tr>
<td>β-glucosidase</td>
<td>249.6</td>
<td>265.4</td>
<td>84.7 ± 30.5</td>
</tr>
<tr>
<td>β-hexosaminidase</td>
<td>9,017.8</td>
<td>17,060.9</td>
<td>4,678 ± 2,246</td>
</tr>
<tr>
<td>β-hexosaminidase A</td>
<td>1,458.7</td>
<td>2,690.1</td>
<td>629 ± 450</td>
</tr>
<tr>
<td>α-mannosidase</td>
<td>325.4</td>
<td>485.3</td>
<td>48.7 ± 27.8</td>
</tr>
<tr>
<td>α-fucosidase</td>
<td>166.8</td>
<td>332.5</td>
<td>64.6 ± 40.7</td>
</tr>
<tr>
<td>β-glucuronidase</td>
<td>51.5</td>
<td>142.9</td>
<td>19.3 ± 12.1</td>
</tr>
<tr>
<td>Arylsulfatase A</td>
<td>387.9</td>
<td>526.0</td>
<td>265.7 ± 129.5</td>
</tr>
</tbody>
</table>

* Lysosomal enzyme activities of the patient and a control were analyzed at the same time to rule out technical error. ** Lysosomal enzyme activities were analyzed previously. *** Lysosomal enzyme activities depend on condition of fibroblast, resulting in variation in enzyme activity levels among controls.

Table 2. Sequences of PCR Primers, PCR Product Size, and PCR Annealing Temperatures (Tₐ) Used for Analysis of the NEU1 Gene

<table>
<thead>
<tr>
<th>Primer sequence 5’→3’</th>
<th>PCR product size (bp)</th>
<th>Tₐ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1F gcttaagggtgacatctgcgtt</td>
<td>373</td>
<td>60</td>
</tr>
<tr>
<td>Exon 1R tgggagaagaaaggtcctgctg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 2F aaccectcggcttcttcctt</td>
<td>443</td>
<td>60</td>
</tr>
<tr>
<td>Exon 2R ccaaceaactcatgctccctccat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 3F ctgagcaaggaagggaaatagcg</td>
<td>427</td>
<td>60</td>
</tr>
<tr>
<td>Exon 3R gaaaggctgttggggttcctc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 4F attggaaggtttgggctctg</td>
<td>500</td>
<td>60</td>
</tr>
<tr>
<td>Exon 4R agtggtagtgctgctgctgc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 5F agagtgtcctcattggtcc</td>
<td>525</td>
<td>60</td>
</tr>
<tr>
<td>Exon 5R catagagctctagctgaagctc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 6F cattgttctcttcaaccaagc</td>
<td>514</td>
<td>60</td>
</tr>
<tr>
<td>Exon 6R gattccctcggtagggggaggtg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCR primers complementary to intronic sequences flanking each of the 6 exons were designed based on the published genomic sequence of the NEU1 gene (NCBI Reference Sequence: NG_008201.1).
The authors state that they have no Conflict of Interest (COI).

Acknowledgement
This study was supported by a grant from the Ministry of Health, Labour and Welfare of Japan (H22-Nanji-Ippan-002).

References

Figure 4. Direct nucleotide sequencing of the PCR-amplified NEU1 gene DNA of a control (A, B) and the patient (C, D).

The vertical arrow indicates nucleotide 239 (exon 2), where a C→T transversion (c.239C>T) resulted in an amino acid substitution, p.P80L (A, C). The arrow head indicates nucleotide 403 (exon 3), where a G→A transversion (c.403G>A) resulted in an amino acid substitution, p.D135N (B, D). The patient was compound heterozygous for the p.P80L and p.D135N mutations.

