Determination of the B-type Natriuretic Peptide Level as a Criterion for Abnormalities in Japanese Individuals in Routine Clinical Practice: The J-ABS Multi-center Study (Japan Abnormal BNP Standard)

Makoto Kawai¹, Michihiro Yoshimura¹, Masaki Harada², Yuji Mizuno³, Shinya Hiramitsu⁴, Mitsuyuki Shimizu¹, Toru Shoda⁵, Koichiro Kuwahara², Kenji Miyagishima⁴, Kenji Ueshima⁶ and Kazuwa Nakao²

Abstract

Objective The present study was undertaken to establish a useful range for the B-type natriuretic peptide (BNP) level, with the ultimate goal of determining a cut-off BNP level that will make it possible to identify patients with clinically important organic heart disorders among patients encountered in clinical practice.

Methods A total of 11,967 outpatients were evaluated for this study, and, after applying the exclusion criteria, 361 patients were finally recruited for the analysis. Compared to the factors of gender and body mass index, aging was considered to be an indispensable factor in this analysis. The ‘median’ plasma BNP level was found to increase slowly with age, but remained lower than 30 pg/mL, even in patients aged 60 years or older. In contrast, the overall ‘95th percentile’ of the plasma BNP level in the patients younger than 60 years was 41 pg/mL, which increased to 139.8 pg/mL in the patients aged 60 years or older.

Conclusion These findings suggest that the lower range of the BNP level allowing for identification of patients with clinically important organic heart disorders increases with age; however, it might be appropriate to adopt a level of approximately 40 pg/mL, even in elderly patients, in order to avoid any possible age-related effects of diastolic dysfunction or other factors.

Key words: aging, plasma B-type natriuretic peptide level, multi-center study, organic heart disorders

Introduction

B-type or brain natriuretic peptide (BNP) is a cardiac hormone (1) that has been utilized to detect early heart failure, estimate the severity of heart failure and predict the prognoses of cardiac patients (2-12). Measuring the plasma BNP level has been shown to be useful for determining the differential diagnosis in patients presenting with respiratory symptoms or other problems (13, 14) and identifying asymptomatic patients with heart disease among individuals undergoing regular health checkups (15).

When the BNP level is used in clinical practice, its reference level (the criterion level) is 18.4 pg/mL, as we have previously reported (16). The lower the plasma level of BNP, the better the prognosis (10); thus, a level of 18.4 pg/mL or lower is theoretically preferable in all patients. However, some clinical physicians in hospitals have expressed...
opinions that 18.4 pg/mL may be too strict for diagnosing heart failure and significant organic heart disorders. Therefore, it has been suggested that a slightly higher cut-off level of plasma BNP would be preferable and more realistic for regular use in the clinical setting. Indeed, a considerable number of patients encountered in clinical practice, not only in cardiology clinics, but also in other departments, have demonstrated plasma BNP levels over 18.4 pg/mL without the presence of any organic heart disorders. It is therefore considered necessary to establish a new reference BNP level applicable for clinical use in hospitals.

The ultimate goal of this study was to determine a cut-off plasma BNP level that makes it possible to identify patients with clinically important organic heart disorders among the patients normally encountered in clinical practice. In other words, to identify a cut-off value that is the minimal level of plasma BNP that can exclude a diagnosis of clinically-relevant heart problems.

Materials and Methods

Study population

A total of 11,967 patients were recruited for this study among the individuals who visited the outpatient cardiology clinics of five facilities (Fujita Health University Hospital, Jikei University Hospital, Jikei University Kashiwa Hospital, Kumamoto Kinoh Hospital and Kyoto University Hospital) that participated in the J-ABS multicenter study (Japan Abnormal BNP Standard) between 2004 and 2008. This study was approved by the Ethics Committee of The Jikei University School of Medicine (20-238 (5528)) (and each committee of the other participating facilities, respectively).

Exclusion and inclusion criteria

The exclusion criteria included patients with structural heart disease without signs or symptoms of heart failure [stage B of the American College of Cardiology Foundation (ACC)/American Heart Association (AHA) heart failure classification guidelines for the evaluation and management of chronic heart failure in adults], more advanced stage C of the ACC/AHA heart failure classification guidelines for the evaluation and management of chronic heart failure in adults, left ventricular end-diastolic dimension (LVDd) ≥60 mm, a left atrial dimension (LAD) ≥40 mm and a left ventricular mass index (LVMI) >125 g/m² in men and >110 g/m² in women on echocardiography, (2) patients with a current and overt history of atrial fibrillation (including patients with a history of catheter ablation, implantable cardioverter-defibrillators or cardiac resynchronization therapy and patients with pacemakers or syncope), (3) patients with a compromised renal function (estimated glomerular filtration rate: eGFR <60 mL/min/1.73 m²), (4) patients with evident inflammatory disease (e.g. pericarditis, myocarditis, infective endocarditis, pneumonia, urinary tract infections or sepsis) and (5) patients with moderate or severe anemia.

Patients with risk factors for heart disease (diabetes mellitus, hypertension, dyslipidemia, obesity and other conditions) and patients receiving treatment for these risk factors (stage A of the ACC/AHA heart failure guidelines) were included in the analysis unless they met any of the exclusion criteria listed above. Based on the patient’s height and weight on admission, the body mass index (BMI) was calculated as the weight (kg) divided by the square (m²) of the height.

Measurement of plasma BNP

The plasma BNP level was measured by a contract laboratory using an MI02 Shionogi BNP instrument (Shionogi & Co., Ltd., Osaka, Japan) or within each facility using the E Test TOSOH II (Tosoh Corporation, Tokyo, Japan). Good correlations were found between the measurements obtained with the Shionoria BNP (the gold standard for BNP measurement) and those obtained using the other method at the individual facilities, with correlation equations and coefficients of $y = 1.01x - 4.223$ ($r = 0.981$) and $y = 0.97x + 3.83$ ($r = 0.996$), respectively, with the Shionoria BNP denoted. The intra-day reproducibility (determined using the coefficient of variation: CV) was 1.6-3.6 and 2.0-2.7, respectively, while the inter-day reproducibility (CV) was 1.3-4.5 and 1.4-3.2, respectively (17, 18). Each blood sample was collected into an EDTA-2Na-treated blood sampling tube that was centrifuged at a low temperature to separate the plasma for the assay.

Doppler echocardiogram and renal function

In this study, Doppler echocardiograms were obtained for all patients at each facility, and the EF was measured in the M-mode (Teichholz formula) and/or using quantitative 2D (biplane modified Simpson’s rule) methods for each subject. The correlation among the methods was excellent. Calculation of the LV mass on echocardiogram uniformly employed the equation for estimation reported by Devereaux et al. (19). The body surface area (BSA) used for the LVMI calculation was derived from the actual height and body weight of each patient. The LVMI and BSA were calculated using the following Devereaux equation and Du Bois equation (20), respectively:

\[
\text{LVMI} = \left\{1.04 \times [(\text{LVDd} + \text{PW} + \text{IVS}) - \text{LVDd}'] - 13.6\right\} \times \text{BSA}^{-0.1} \text{~g/m}^2; \]

\[
\text{BSA} = \text{height}^{0.725} \times \text{body weight}^{0.425} \times 0.007184 \text{~m}^2. \]
Table 1. Clinical Characteristics of the Study Population

<table>
<thead>
<tr>
<th>Factors</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP (pg/mL)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>Age (years old)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>196</td>
<td>162</td>
<td>358</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>196</td>
<td>162</td>
<td>358</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>187</td>
<td>159</td>
<td>346</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>187</td>
<td>159</td>
<td>346</td>
</tr>
<tr>
<td>Heart rate (/min)</td>
<td>182</td>
<td>159</td>
<td>341</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>EF (%)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>LAD (mm)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>LVDd (mm)</td>
<td>197</td>
<td>164</td>
<td>361</td>
</tr>
<tr>
<td>LVMI (g/m²)</td>
<td>196</td>
<td>162</td>
<td>358</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median (25th, 75th, 95th percentiles)</th>
<th>Median (25th, 75th, 95th percentiles)</th>
<th>Wilcoxon rank sum test</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP (pg/mL)</td>
<td>10.4 (4.9, 24.0, 71.9)</td>
<td>16.4 (9.0, 29.7, 84.8)</td>
</tr>
</tbody>
</table>

BNP: B-type natriuretic peptide, BMI: body mass index, BSA: body surface area, eGFR: estimate glomerular filtration rate, EF: ejection fraction, LAD: left atrial dimension, LVDD: left ventricular end-diastolic dimension, LVMI: left ventricular mass index

To evaluate the renal function, the following equation for estimation announced in May 2008 by the Japanese Society of Nephrology was employed instead of the conventionally used Modification of Diet in Renal Disease (MDRD) Study equation and the Cockcroft-Gault equation for conversion (21). Patients with an eGFR <60 mL/min/1.73m² were excluded from the analysis:

\[
eGFR = \frac{194 \times \text{age}^{0.287} \times \text{Scr}^{-1.094} \times 0.739}{(\text{for women})} (\text{mL/min/1.73m²})
\]

Table 2. Percentile BNP Values for Gender Difference

<table>
<thead>
<tr>
<th>Male (n = 197)</th>
<th>Female (n = 164)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (25th, 75th, 95th percentiles)</td>
<td>Median (25th, 75th, 95th percentiles)</td>
<td>Wilcoxon rank sum test</td>
</tr>
<tr>
<td>BNP (pg/mL)</td>
<td>10.4 (4.9, 24.0, 71.9)</td>
<td>16.4 (9.0, 29.7, 84.8)</td>
</tr>
</tbody>
</table>

BNP: B-type natriuretic peptide

Results

Characteristics of the final study population

Among the 11,967 recruited patients, the final number of patients was reduced to only 361 (3%) after applying the exclusion criteria. Among the finally adopted study population, 197 patients were men and 164 patients were women, and their mean age was 50.3±18.3 (mean ± SD) years ranging from 12 to 90 years. All other clinical characteristics are shown in Table 1.

Plasma BNP levels and gender differences

The plasma BNP levels (median values) were significantly higher in the women than in the men, as shown in Table 2.

Plasma BNP levels and BMI

Fig. 1 shows the relationship between the plasma BNP levels and BMI. The logarithmically-converted plasma BNP levels decreased as the BMI increased, and the BNP level was found to be significantly correlated with BMI (n =358, r =-0.239, p <0.0001).

Plasma BNP levels and age

Fig. 2 shows the relationship between the plasma BNP levels and age. The logarithmically-converted plasma BNP levels increased with age and were found to be significantly correlated with age (n =361, r =0.5168, p <0.0001). As shown in Table 3, the 95th percentile of the plasma BNP level gradually increased with age; however, it increased at a value of three to four times in the patients aged 60 years or older compared to that observed in the other age groups. For patients younger than 60 years of age, the overall 95th percentile of the plasma BNP level was 41 pg/mL (Tables 3, 4).
Discussion

In the present study, we attempted to determine a reference level for the plasma BNP level that would be useful for identifying patients with clinically important organic heart disorders among patients encountered in routine clinical practice. This cut-off value would be considered the minimum plasma BNP value used to identify patients with stage B or higher ACC/AHA heart failure (13).

Relationship between the plasma BNP levels and gender

The present study demonstrated a significant effect of gender on the plasma BNP level (Tables 1-3), consistent with the findings of a previous report (22). We found the plasma BNP levels (the mean or percentile of the values) to be slightly higher in women than in men (Tables 1, 2). In each age group, the median plasma BNP level was slightly higher in the women than in the men, and the absolute difference in this parameter between the women and men was approximately 6 pg/mL. One reason why gender influences the BNP level may involve hormonal regulation of estrogen (22), as Redfield et al. reported that hormone replacement therapy (HRT) increased the plasma BNP levels in each of their age-matched female patient groups.

Relationship between the plasma BNP levels and BMI

BMI was also identified to be a significant factor determining the plasma BNP level in the present study (Fig. 1). Consistent with the previous finding that the plasma BNP levels tend to be lower in obese individuals (23), the present study revealed a negative correlation between the plasma BNP level and obesity (Fig. 1). This finding suggests that increases in obesity can suppress the plasma BNP levels. However, the BMI-related change observed in the present study population was relatively small. If heart failure becomes advanced, then the influence of obesity on the plasma BNP level may become stronger (24).

Relationship between the plasma BNP levels and age

Compared to gender and BMI, age was identified to be a more important factor in this analysis. When analyzing the ‘median’ plasma BNP level, this parameter was found to increase slowly with age [6.4 pg/mL at ages of 29 years or younger (the ≤29 years group); 8.4 pg/mL at ages between 30 and 39 years (the 30-39 years group); 10.6 pg/mL at ages between 40 and 49 years (the 40-49 years group); 11.1 pg/mL at ages between 50 and 59 years (the 50-59 years group); 25.0 pg/mL at ages of 60 years or older (the ≥60 years group)] (data not shown in Results) and remained lower than 30 pg/mL, even in the patients aged 60 years or older (Fig. 2). Significant differences in the BNP levels among the four age groups under the age of 60 years were found: between the ≤29 years group and the 30-39 years group, and between the ≤29 years group and the 50-59 years group (using the Wilcoxon rank-sum test, data not shown). These results indicate that the BNP levels in the ≤29 years group were lower than those in the other age groups, although there were no significant differences in the BNP levels in the remaining age groups (30-39, 40-49 and 50-59).

On the other hand, the ‘95th percentile’ of the plasma BNP level rose more markedly with age; however, it did not uniformly increase in the four age groups under 60 years of age (Table 3), reaching 139.8 pg/mL in the patients aged 60 years or older (Fig. 2, Table 3). These findings indicate that the plasma BNP level does not uniformly exhibit age-related elevations in all individuals, although the overall percentage of individuals with elevated plasma BNP levels does increase with age. While it is known that the physiological function gradually decreases with age, it remains unclear whether the decrease should be considered an illness or an inevitable natural change.

Therefore, in the present study, we excluded some of the
The cut-off level of plasma BNP in other studies

The cut-off level of plasma BNP in other studies is approximately 40 pg/mL. This value is considered to be useful for identifying patients with heart disease by aging as much as possible. Reductions in the diastolic function in the Japanese population tend to become evident at ages over 60 years (25, 26); therefore, we calculated the 95th percentile plasma BNP level for individuals younger than 60 years of age and found it to be 41 pg/mL. Indeed, elderly persons with a well maintained diastolic function who demonstrate low plasma BNP levels generally show good prognoses (27, 28). It thus appears appropriate to adopt a level of approximately 40 pg/mL as a useful refer-

e. This provides further evidence that a cut-off level of approximately 40 pg/mL is useful.

The cut-off levels of plasma BNP in other studies

A plasma BNP level of approximately 40 pg/mL is equivalent to the cut-off levels reported in other studies of individuals undergoing thorough health checkups (15, 29). These studies attempted to determine the plasma BNP level that is useful for identifying patients with heart disease by means of receiver operating characteristic (ROC) analyses and obtained cut-off levels of 40 or 50 pg/mL. The cut-off level obtained in the present study is identical to these re-

ported levels, despite the fact that our study used a different study population. Therefore, a value of approximately 40 pg/mL is considered to be highly significant.

In other countries, plasma BNP level measurements have been reported to be useful in the differential diagnosis of pa-

tients presenting with heart disease when the cut-off level was set at 80-100 pg/mL (30, 31). Because the plasma BNP levels obtained using the measurement system generally used in the United States are approximately 1.6-fold the lev-

els obtained using the Japanese system (32), the reported non-Japanese cut-off levels are also considered to be equiva-

lent to a cut-off level of approximately 50-62.5 pg/mL in Ja-

pan. This provides further evidence that a cut-off level of approximately 40 pg/mL is useful.

Significance of BNP values of 18.4 pg/mL and 40 pg/mL

The cut-off level obtained in this study is not inconsistent with the existing cut-off level (not more than 18.4 pg/mL or 20 pg/mL). The cut-off level ‘not more than 18.4 pg/mL’ was derived from healthy individuals, and hence, only pertains to healthy individuals. Moreover, this cut-off value could be considered the borderline between a no-risk popula-

tion and subjects with stage A ACC/AHA heart fail-

ure (13). In contrast, the cut-off level ‘40 pg/mL’ obtained in the present study indicates that the levels above this value are very likely to be associated with cardiac abnormalities or heart failure on existing tests and examinations. In other words, this cut-off level is thought to be the minimal plasma BNP level necessary to detect clinical heart abnormalities as well as the approximate border between stage A and stage B of the ACC/AHA heart failure classification (13). We there-

fore propose that this cut-off level be considered a ‘standard for plasma BNP abnormality’ for clinical utilization and verification. Fortunately, this standard is applicable not only in routine clinical practice, but also in cardiac screening performed during health checkups, thorough health checkups, critical care and other clinical situations, as described in the previous reports discussed above.

Limitations

First, BNP is not the only marker of organic heart disorders, and it is sometimes impossible to rule out heart diseases if patients demonstrate levels of less than 40 pg/mL. For example, there may be patients whose plasma BNP lev-

els are less than 40 pg/mL but who nevertheless have ischemic heart diseases, including acute coronary syndrome, apical hypertrophic cardiomyopathy, pericarditis, infective endocarditis, sarcoidosis, amyloidosis, cardiac tamponade, etc. In addition, caution should be exercised in patients with unwitnessed symptomless arrhythmias (e.g. paroxysmal atrial fibrillation), since the plasma BNP levels are known to fluctuate widely in such individuals. Other examinations should therefore be used in combination with the BNP level, as appropriate.

Second, among the exclusion criteria used in this study, the LVMI may need to be considered. Cardiac hypertrophy arises as an early compensatory phenomenon in the presence of either poor blood pressure control or a compromised renal function and is a strong risk factor for the occurrence of cardiovascular events (33). When designing exclusion crite-

Table 3. 95th Percentile BNP Values for Each Age Group

<table>
<thead>
<tr>
<th>95th percentile BNP (pg/mL), (n)</th>
<th>Age: -29</th>
<th>Age: 30-39</th>
<th>Age: 40-49</th>
<th>Age: 50-59</th>
<th>Age: 40-59</th>
<th>Age: 60-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>29.6, (62)</td>
<td>46.2, (48)</td>
<td>33.3, (47)</td>
<td>50.9, (76)</td>
<td>41.0, (123)</td>
<td>139.8, (128)</td>
</tr>
<tr>
<td>Male</td>
<td>21.3, (39)</td>
<td>64.4, (31)</td>
<td>31.9, (26)</td>
<td>53.0, (39)</td>
<td>42.7, (65)</td>
<td>84.4, (62)</td>
</tr>
<tr>
<td>Female</td>
<td>37.9, (23)</td>
<td>46.2, (17)</td>
<td>33.3, (21)</td>
<td>44.0, (37)</td>
<td>39.4, (58)</td>
<td>147.2, (66)</td>
</tr>
</tbody>
</table>

BNP: B-type natriuretic peptide

Table 4. 95th Percentile BNP Values for Each Age Group

<table>
<thead>
<tr>
<th>Age: -59</th>
<th>Age: 60-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>233, 128</td>
</tr>
<tr>
<td>95th percentile BNP (pg/mL)</td>
<td>41.0, 139.8</td>
</tr>
</tbody>
</table>

BNP: B-type natriuretic peptide

Data for the elderly group from the analysis because we wanted to exclude patients with diastolic dysfunction caused by aging as much as possible. Reductions in the diastolic function in the Japanese population tend to become evident at ages over 60 years (25, 26); therefore, we calculated the 95th percentile plasma BNP level for individuals younger than 60 years of age and found it to be 41 pg/mL. Indeed, elderly persons with a well maintained diastolic function who demonstrate low plasma BNP levels generally show good prognoses (27, 28). It thus appears appropriate to adopt a level of approximately 40 pg/mL as a useful refer-

e. This provides further evidence that a cut-off level of approximately 40 pg/mL is useful.
ria related to cardiac hypertrophy, we noted that few reports have been published on LVMI in the Japanese population (25, 26). We therefore determined the cut-off LVMI levels reported in approximately 50 papers dealing with LVMI in Japanese subjects published over the past decade and found the cut-off levels based on the European Society of Cardiology Guidelines (2003), i.e., men >125 g/m² and women >110 g/m², to have been the most frequently applied (34). However, the influence of cardiac hypertrophy may still not be sufficiently excluded even when using an LVMI cut-off level and other exclusion criteria.

Finally, this research study targeted outpatients who visited the cardiovascular unit at each hospital. Almost all of the patients had some form of cardiac disease, and only 3% (361/11,967) of the total outpatients who visited the clinic had no-event cardiovascular disorders. Therefore, it was impossible to draw a ROC curve from the present data. Moreover, in this study, the level of 40 pg/mL was not investigated with regard to its significant for determining subsequent prognosis. A prognostic study should be performed in another series of patients. In addition, the age-related reference levels of plasma BNP for use in detecting heart abnormalities, including diastolic dysfunction, might also need to be determined in another series of studies.

Conclusion

We herein attempted to determine a reference level for the plasma BNP level that would be useful for identifying patients with clinically important structural heart disease among patients encountered in routine clinical practice. The lower range of BNP allowing for identification of patients with clinically important organic heart disorders increases with age; however, it might be appropriate to adopt a level of approximately 40 pg/mL, even in elderly patients, in order to avoid possible age-related effects of diastolic dysfunction or other factors. It is advisable to explore the underlying diseases in patients whose plasma BNP levels exceed this standard.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

We thank Dr. Hirofumi Yasue, Director General, Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute for providing valuable advice regarding the discussion of this study.

References

19. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy...

© 2013 The Japanese Society of Internal Medicine
http://www.naika.or.jp/imonline/index.html